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Are these really real numbers? 

Many students are intrigued by the unusual equation: 

Intermediate algebra students may have been shown that the equation 

when squared on both sides, leads to the "solution" x = 2. While they are likely to 
see this as no more than a clever trick, the suggestion that there are strange numbers 
awaiting exploration has been seeded. Further on, trigonometry students may know 
that there are specific equivalents for some finite "nests" of radicals :  

and 

J 2 + h = 2 cos ( �) ' 
J 2 + J 2 + .j2 = 2 cos ( �) ' 

/2 + J 2 + J 2 + h = 2 cos (�) ' 

J 2 - h = 2 sin ( �) , 
*Current address: Evergreen Valley College, San Jose, CA 95135 

3 
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J2- J2 + ../2 = 2 sin (;6), 
� 2 - J 2 + J 2 + ../2 = 2 sin ( ;

2
) , 

Thus, they may accept that the limits of both sequences exist, and are 2 and 0, respec
tively. What happens if the number 2 is replaced by some other positive number a .  
Will the limit always exist? I t  i s  well-known that the Golden Ratio, ¢ ,  can be written 
as such a limit 

¢ = J 1 + J 1 + .J1 + · · · . 

But is it possible to write any arbitrary integer, rational number, or indeed :rr or e as 
the limit of some sequence of nested radicals?  And if an integer k is such a limit, how 
many different sequences of radicals will converge to k?  Although there seems to be 
some revived interest in this topic [4], [5], previous research has not considered these 
questions [1]-[8]. In this paper we will make a systematic study of nested radicals, an
swering many such questions and suggesting further lines of research for the interested 
reader. 

The radicals J a+ J a+ ,J a+ · · · 

Let us start with the familiar expression J2 + J2 + .J2 + · · · . In order to specify 
what is meant by an infinite sequence of radicals, we introduce a more precise def
inition: let x1 = .Ji , and Xn+l = .J2 + Xn for each n :=:: 1 .  This recursive definition 

clearly gives rise to the sequence .Ji, J2 + .Ji, J2 + J2 + .Ji, . . . .  We may then 
consider the process of taking infinitely many radicals as the limit of this sequence, 
provided that it exists . Using the Half Angle Formula and Mathematical Induction, it 
is not difficult to see that for each n :=:: 1, Xn = 2 cos ( 2.':1 ) .  Thus, the sequence {xn } is 
a bounded, monotonically increasing sequence, and hence, limn�oo Xn exists. In fact, 
limn---+oo Xn = limn---+oo 2 cos ( 2.':1 )  = 2.  We now consider the more general nested rad
ical sequence 

Since a ::::: 0 will give rise either to the trivial sequence of zeroes or to sequences 
involving imaginary numbers, we will restrict our attention to the case where a > 0. 
For any real number a > 0, define r1 (a) = Ja, and for each n :=:: 1, define rn+l (a) = 
.Ja + rn (a ) .  When the value of a is clear from the context, we will simply write rn for 
rn (a) .  

LEMMA 1 .  The sequence {rn } is always a bounded, monotonically increasing se
quence. Thus, the limit limn--+oo rn exists. 

Proof. Since a > 0, r1 = Ja < Ja + Ja = r2. Now, if rn < rn+h then rn+l = 
.Ja + rn < .Ja + rn+l = rn+Z · Thus, {rn } is an increasing sequence by induction. 
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To show that the sequence {rn } is bounded, first consider the case where a 2: 2. 

In this case, 0 < r 1  = Fa ::::; a . Now, if 0 < rn ::::; a for any positive integer n, it fol
lows that 0 < rn+ i = �a +  rn ::::; ..j2Q::::; R = a . Thus, by induction, 0 < rn ::::; a 
for each n . 

Next consider the case where 0 < a  < 2. We will show that 0 < rn ::::; 2 for each n .  
First note that r 1 = Fa < ./2 < 2 .  If 0 < rn ::::; 2 for any positive integer n ,  i t  follows 
that 0 < rn+ i = �a + rn ::::; �a + 2 ::::; .J4 = 2. Thus, by induction, 0 < rn ::::; 2 for 
e�h n .  • 

We will let r (a ) ,  or simply r when the value a is clear from the context, be the limit 
limn-+exJ rn . Applying the limit on both sides of the defining equation rn+ l = �a +  rn 
and clearing the radical will lead to the quadratic equation r2 - r - a = 0. Thus r = 
I±� . Since each rn > 0, r 2: 0. Also, since a > 0, we may conclude that 

r =  
1 + � 

2 
( 1 )  

Since r (a)  = '+� , the relation a r--+ r (a) is one-to-one, i .e . ,  a specific limit 
r (a)  > 0 can come only from a specific value of a > 0. Given that the sequence -vfa, 
J a + -vfa, J a + J a + -vfa, . . .  looks quite ugly when a is irrational,  we will restrict 
a to being rational. 

What are the possible limits if a is rational? Since a > 0, 

1 + �1 + 4a 1 + 1 r (a) = > -- = 1 .  
2 2 

Thus, only a real number greater than 1 can be a limit. From the equation ( 1 )  above, we 
see that any limit r (a) will have to be a root of the quadratic equation x2 - x - a = 0. 
And thus a transcendental number such as n or e can never be the limit of a sequence 

of nested radicals -vfa, J a + -vfa, J a + J a + Fa, . . .  if a is rational. 

THEOREM 1 .  For each rational number h > 1 ,  h (h - 1 )  is the unique rational 
number a such that r (a) = h. 

Proof. Let a rational number h > 1 be given. We simply let a be the rational number 

h (h _ 1 ) .  Then r (a) = 1 +� = l +v'I+;h(h-1 ) = l+�4h;-4h+i = 1 +2
2h
-l = h .  The 

uniqueness of a follows from the observation that the relation a r--+ r (a) is one-to-one . 
• 

Note that if h is an integer> 1 ,  a = h (h - 1 )  will also be a positive integer. Thus, 
Theorem 1 in particular says that every positive integer k > 1 is the limit of a sequence 

of nested radicals -vfa, Ja + -vfa, Ja + Ja + -vfa, . . .  for a unique positive integer 
a = k(k - 1 ) .  For example, 

3 = ! 6 + /6 + �6 + · · · (where a = 3 (3 - 1 )  = 6) 

4 = ! 1 2  + J 1 2  + �12 + · · · (where a = 4(4 - 1 )  = 1 2) 

5 = ! 20 + /20 + �20 + · · · (when a =  5 (5 - 1 )  = 20) . 
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The radicals J a+ bj a+ b� 
Let's extend our investigation slightly. Consider the sequence 

for some positive rational numbers a and b. This sequence can be defined recursively 
by letting s 1 (a , b) = Ja, and for each n 2:: 1 ,  letting sn+ l (a , b) = Ja + b · sn (a , b) . 
Again, when the values of a and b are clear from the context, we will simply use sn for 
Sn (a , h) . 

Note that for a given pair of a and b, if we let rn = isn , then r1 = is 1 = f"[;, and 

for each n 2:: 1 ,  

Thus,  {rn } i s  the sequence of nested radicals 

considered above, or in our notation, sn (a , b) = b · rn (fjz) .  We may then conclude 
from the above that for any positive rational numbers a and b, the nested sequence 
of radicals sn (a , b) always converges . We will let s (a ,  b) ,  or simply s, be the limit, 
limn--+oo Sn (a , b) . Since sn (a , b) = b · rn (-{jz ) for each n, we have 

- ( a ) - 1 + J 1 + 4-fjz 
- b + Jb2 + 4a 

s (a , b) - b · r 
b2 - b · 

2 
-

2 
. 

We will again ask what numbers can be the limit of the sequence {sn (a , b) } .  Since 
a > 0, the limit s (a ,  b) must be greater than the number b. Applying the limit on both 
sides of the defining relation sn+ l  = Ja + b · sn , we see that the limit s will have to be 
a root of the quadratic equation x2 - bx - a = 0. Thus, once again a transcendental 
number can never be the limit of such a sequence of nested radicals .  

Since sn (a , b) = b · rn (fjz) for each n ,  a number h is  the limit for the sequence 

{sn (a , b) } for some positive rational numbers a and b if and only if � is the limit for 
the sequence { r n ( fz) } .  By Theorem 1 above, this is true if and only if fz = � ( � - 1), 
or a = h (h - b) . 

The following theorems can all be readily proven from this ,  and we state them 
without proof. 

THEOREM 2 .  For each positive rational number h, there are infinitely many pairs 
of rational numbers a and b such that h = limn--+oo sn (a , b) . 

The situation is particularly interesting when the numbers involved are all integers . 

THEOREM 3 .  For each positive integer k > 1, there are exactly k - 1 pairs of in
tegers a and b, where 0 < b < k, and a = k(k- b), such that k = limn--+oo sn (a , b). 
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For example, if we take k = 4, we have 

j 1 2  + J 1 2  + .J12 + · · · = 4 (when b = 1 )  

j 8 + 2) 8 + 2,J8 + · · · = 4 (when b = 2) 

j4 + 3)4 + 3,J4 + · · · = 4 (when b = 3) .  

If b is  not restricted to integer values, we have 

7 

THEOREM 4 .  Let k > 1 be an integer. For each divisor q of k and each integer p, 
0 < p < kq, let b = E. and a =  k(k- b). Then k = limn---+oo sn (a , b) . In fact, these q 
are the only possible choices for a and b, when a is a positive integer and b a positive 
rational number. 

For example, for k = 4, 

� 1 5  + �j 1 5  + �,J15  + · · · = 4 (when q = 4, p = 1 )  

� 14 + �j 14  + �,J14 + · · · = 4 (when q = 4, p = 2) 

/ 1 3  + �j1 3  + �,J13  + · · · = 4 (when q = 4, p = 3) 

/ 1 + 1: j 1 + � .J1 + · · · = 4 (when q = 4, p = 15 ) .  

We've now seen that by  introducing the factor b we've expanded the uniqueness of 
the earlier nests enormously. Simply comparing the statements of Theorems 1 and 2 
makes this clear. 

The radicals J a- bj a- b.Ja- · · · 

Let's now take a further step by considering the nested radicals 

and then, more generally, the nested radicals 

Let's begin with the first sequence. We will let u 1 (a) = .fii, and for each n � 1 ,  let 
Un+ I  (a) = ,Ja - un (a) .  To avoid imaginary numbers, we need to require a - .fii � 0, 



8 MATH EMATICS MAGAZI N E  

or a 2: I .  Since a = I leads to an alternating sequence of zeroes and ones, w e  will 
assume a > I .  If this condition is satisfied, then u 1 is a positive real number :::; ,JQ. 
Using the recursive relation Un+ 1 (a) = Ja - un (a) ,  it is easy to see that if Un is a 
positive real number :::; Ja so is Un+1. By induction we may show that the sequence of 
even terms u2 , u4 , u6 , . • .  is increasing, and the sequence of odd terms Ut. u3 , u5 , • . •  

is  decreasing. Since both sequences are bounded between 0 and Ja, both of them 
converge. To see that these two sequences converge to the same limit, we first note that 
Un+1 + Un 2: Ja. This can be seen as follows.  Since Un+1 + Un = Ja - Un + Un and 
each u" lies in the interval [0, Ja ], we may consider the function f (x) = J(,l=X + x 
on this interval. Using f'(x) ,  we may show that f is increasing on the interval [0, a
±], reaching its maximum at a - ±, and then decreases from this point on. Now, restrict 
our attention to f (x) for x in the interval [0, Ja]. Regardless whether the maximum 
point a - ± falls in the interval [0, Ja] or not, the minimum of f on this interval can 
only be at one of the end points of this interval. Comparing the values of f at these two 
end points, we conclude that the minimum value of f on this interval is at the left end 
point x = 0 with Ja its minimum value. Hence, f (x) 2: Ja for all x in this interval. 
In particular, Un+1 + Un 2: ,JQ. From this ,  we have 

lu�+1 - u �l 
lun+1 - Un I = _____:_:.._:_:_ _ _____:_:__ 

Un+l + Un 

I a - Un - a +  Un-tl 

Un+1 + Un 

lun- Un-11 < -----Ja 
With this and the assumption that a > 1 ,  we may conclude that the two subse
quences u2 , u4 , u6 , . . .  and Ut. u3 , u5 , • • •  converge to the same limit, and conse
quently, the sequence un (a) is  convergent for any real number a > 1 .  Let u (a) ,  or 
simply u, be the limit. As before, the limit u (a) ,  for a given a, must satisfy the 

quadratic equation x2 + x - a =  0, and hence, u (a) = -1+f+4a. We see that the 
limit is always a positive number. On the other hand, we will see below in Theo
rem 5 (with the special case b = I )  that any positive number h > i can be such 
a limit by letting a = h (h + 1 ) ,  where </J is the Golden Ratio. Now, consider the 

nested radicals Ja, J a - b,J{i, J a - b) a - b,J{i, . . . . Since we have already con-

sidered the case J a + b) a + b�, we will restrict our attention to b > 0. Let 

v1 (a , b) = Ja, and for each n 2: I ,  let Vn+1 (a , b) = Ja - b· Vn (a , b) . Note that for 
each n ,  vn(a, b) = b · u n (-{)J . In particular, for the Vn (a , b) to be real numbers, we 

need to have {;2 2: I ,  or a 2: b2 • In the following theorem, we will show that any 
positive number h ,  under minor restrictions, can be the limit of a sequence vn(a, b) 
for some positive numbers a and b. Surprisingly, we will find that the Golden Ratio 

</J = 1+2v'5 is involved. 

THEOREM 5 .  Let h, a, and b be positive numbers. Then h = limn-+oo Vn(a, b) if 
and only if 

( I )  0 < b < </J • h, and 
(2) a = h (h + b). 

Proof Since for each n, Vn (a , b) = b · Un (fj2 ) , the limit v = limn-+oo Vn(a, b) ex
ists if and only if u = limn-+oo un ({j2 ) exists and v = b · u .  But the value of u ( fj2 ) 
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-1+)1+4(--'1-l 
is given by 2 b • We may then conclude that v (a ,  b) , if it exists, must satisfy 

-1+)1+4(--'1-l b+.Jb2+4a 
v (a ,  b) = b · 2 h = - 2 a .  Simple algebraic manipulation will show that 

h = -b+� if and only if a = h (h + b) .  This establishes condition 2 .  
As for condition 1 ,  we have shown that the sequence un ( f}i:) is  well defined, i .e . ,  

free from imaginary numbers, if and only if a 2: b2 . But now, a = h (h + b) and the 
equality a = b2 leads to the sequence which is alternately b and 0. The condition can 
be restated as h (h + b) > b2 , or b2 - hb - h2 < 0. For a given h ,  this means that the 
value of b must lie between the two roots of the quadratic equation b2 - hb - h2 = 0 

in b ;  that is ,  ( 1
�../S)h < b < ( 1 +

2
../S)h .  Since b > 0, we  have 0 < b < ('+2

../S)h ,  or 
0 < b < ¢ · h . This establishes condition 1 .  • 

COROLLARY I .  For each positive integer k, there are integers a and b such that 
k = J a - bj a - b_J a - · · ·. In fact, since a and b must satisfy the two conditions of 
Theorem 5, there are only finitely many such integers a and b. 

If k and a are integers and b is allowed to be a fraction, we may conclude that for each 
divisor q of k, and for each integer p such that 0 < E. < ¢ · k, if we let b = E. and q q 
a = k (k + b) , we will again have k = Jra-_----:bj-;::-a
=
-=;=by'===;;a;;-;;
;;. ·
;;
· .  

For instance, for k = 4 and q = I ,  since ¢ · k � 6.472, there are six possible values 
for p = 1 ,  2, 3, . . .  , 6 and the corresponding values for b = E. = p and a are b = q 
1 ,  2, 3 ,  . . .  , 6 and a = 20, 24, 28,  . . .  , 40, respectively. For k = 4 and q = 2, there are 
1 2  possible values for p = 1 ,  2, 3 ,  . . .  , 1 2  and the corresponding values for b and a 
are b = 1 /2, I, 3/2, 2, . . .  , 6 and a = 1 8 ,  20, 22, 24, . . .  , 40, respectively. 

Alternating sequences 

Having considered the nests of positive signs and nests of negative signs, we now 
consider nests with alternating signs. Specifically, we will consider the sequences 

Ja - bJa + b-Ja - · · ·  and /a + bJa - b-Ja + · · · , a , b>O. 

As we will see, the limits of these sequences depend on whether we start with 
a positive or negative sign. For our investigation, we need two recursively defined 
sequences .  Let x1 = J a + b.j{i and y1 = J a - b.j{i. For each n 2: I, let Xn+1 = 
-Ja + b Yn and Yn+1 = -Ja - bxn . For what values of a and b will these sequences be 
defined and when will they be convergent? Note that there is no problem for the Xn ' s  

as  long as  the Yn ' s  are positive. On the other hand, for y2 = J a - b) a + b.j(i to be 

real, the value of a will have to be greater than or equal to bj a + b.j{i. This also turns 
out to be sufficient for the sequences to be defined, as we now show. 

LEMMA 2 .  Let a and b be two positive real numbers. The sequences {xn} and {yn} 
are well-defined if and only if a > bj a + b.j{i. 

Proof. As we pointed out in the definition of y2 , the condition a > bj a + b.j(i is  
necessary. To show this condition is also sufficient, consider two positive numbers a 
and b satisfying a > bj a + b.j(i. We will show sufficiency by proving the following 
stronger assertion: 
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Assertion. Let a and b be two positive real numbers such that a > bj a + by'a. 
Then, for each positive integer n ,  0 < Yn :=::: Ja ::::; Xn :=::: J a + by'a. 

We first show that these inequalities are true for n = 1 .  We have 

Since y1 = J a - by'a, this means that y1 > 0. Also, 

Thus, 

YI = J a - b,JQ < J a - 0 = ,Ja. 

0 < YI :S ,JQ. 

On the other hand, by definition, x 1 :=::: J a + by'a. Thus, our assertion holds for 
n = I. 

Now, suppose that our assertion holds for a positive integer n .  Since 

we have a - bxn :::: a - bj a + by'a, which is a positive real number by our condition 
on the numbers a and b. Thus, the number Yn+I = Ja - bxn is a well-defined positive 
real number. Furthermore, since both b and Xn are positive, 

Yn+I = J a - bxn < J a - 0 = ,Ja. 
In addition, since byn > 0 and Yn :=::: y'a, we have 

This says that Ja :=::: Xn+I :=::: J a + by'a. Thus, the assertion is also true for n + 1 .  
By induction, this proves our assertion and, in consequence, that our sequences are 
well-defined. • 

What numbers a and b do in fact satisfy the inequality a > bj a + by'a of Lemma 
2? Dividing both sides by b2 and squaring the two quantities, we can rewrite this in-
equality as (�f- (fz") > /fz· Comparing the graphs of the functions f(t) = t2 - t 
and g(t) = Jt for t :::: 0, we see that there is a unique constant c > 0 such that 
t2 - t > ..ji if and only if t > c. Thus, a and b satisfy the condition a > bj a + by'a 
if and only if fz > c or a > b2c. Solving the equation t2 - t - Jt = 0, one may show 
that 

c = - 2 +  -- -v69 + - + -v69 � 1 .75488 .  
1 { 125 3 � 125 3 � j 
3 2 2 2 2 

In the following theorem, we will show that the sequences Xn and Yn are both con
vergent. Assuming this for the moment, let x = limn-.oo Xn and y = limn-.oo Yn . Taking 
the limit on both sides of the equations Xn+I = Ja + byn and Yn+I = Ja - bxn , we 
have x = J a + by and y = J a - bx . From these, one may easily show that the dif
ference of these two limits, x - y is always the number b. Thus, the "hybrid" sequence 
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consisting of both Xn ' s  and Yn ' s  cannot be convergent. Furthermore, if x = limn--.oo Xn 
and y = limn--.oo Yn· one may easily show that the two limits, x and y, have to satisfy 
the equations 

x4- 2ax2 + b3x + a2- ab2 = 0, and y4- 2ay2- b3y + a2- ab2 = 0,  

respectively. Thus, for rational numbers a and b, the limits of the nested sequences 

can never be transcendental numbers . We may now specify what numbers those limits 
can be. 

THEOREM 6. Let c be the constant specified above. For any positive real number 
k, let a and b be any real numbers such that 
( 1 )  0 < b < (�)-!'and 
(2) a = k2 + bk + b2, 
then limn--.ao Yn = k and limn--.ao Xn = k + b. 

Proof. 
( 1 )  Let any positive constant k be given. We first show that if a and b are two numbers 

satisfying the conditions above, the condition a > bJ a + b.j{i will be satisfied. 
This can be seen as follows.  It was shown above that a and b satisfy the condition 

a > bJa + b.j{i if and only if -tz > c . Now, a= k2 + bk + b2• The inequality 

-tz > c is equivalent to ( � )2 + ( �)  + 1 > c, or (�)2 + ( �)  + 1 - c > 0. This ex

pression is true if and only if the positive number ( �) is  greater than the positive 
root of the quadratic equation x2 + x + 1 - c = 0, or 

k -1+J4c-3 - > ------
b 2 

which is equivalent to condition 1 above. Thus, if the two conditions in the theorem 
are satisfied, the sequences {xn} and {yn} are well-defined by Lemma 2 above. 

(2) We now assume that a and b are two numbers satisfying the two conditions given 
in the theorem. We have in particular a > bJ a + b.j{i. By the assertion in the 
proof of Lemma 2, each Xn and Yn is a well defined positive number and .j{i ::=:: Xn 
for each n. For any given positive number k and for each integer n :::: 2, since 
Yn+i = Ja - bxn and Xn+i = Ja + byn, 

-k -
IY;+l - k21 

IYn+l I -
IYn+i + kl 
l(a-bxn)-k21 < ------

k 
l(bk + b2)- bxnl 

k 
bl(k + b)2-x;1 = -------'-'-
k((k +b)+ Xn) 

(since Yn+l = J a -bxn > 0) 
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bl(k + b)2- (a+ bYn-1)1 = (using again a =  k2 + bk + b2) 
kl(k +b)+ Xnl 

blkb- bYn-11 

kl (k +b)+ Xn l  

b21Yn-l - kl r;: < (now since .ya ::S Xn ) 
- kl(k+b)+Jal 

1 
= IYn- 1 - kl 

�(� + 1 +#) 

for all Xn and Yn· 

S
. k -l+v'4c=3 h - 1 75488 1 75 k -I+� - ! Also mce b > 

2 
, w ere c - . . . .  > . , b > 

2 - 2• 
, 

G. = k2+:�+b2 > 1 .  Thus,  k k 1 fl < 1 1 1 < 1 .  From this, it follows that V b2 n<n+l+ b2l ,;<z+l+ll 
limn->oo Yn = k. Now, since Xn = ,Ja + bYn-t. taking the limit, we have limn->oo Xn = 
,Ja + kb = v'k2 + bk + b2 + bk = k +b. This completes the proof. • 

Given that c � 1 .75488 . . .  < 1 .76, (�)-I > <v'4x1��-3)-l � 1 .9802k . For b ::S 
1.9k the possible values for the limits of Xn and Yn can now be summarized as follows: 

( 1 )  Any positive number k can be the limit of the sequence Yn . We need only choose 
two positive numbers a and b such that b ::S 1 .9k, and a = k2 + bk + b2• If k is 
rational, we might choose a and b to be rational as well. And if k is an integer, then 
a and b can also be integers. Thus, for instance, with k = 2, b = 1 ,  and a = 7, 

with k = 2, b = 2, and a = 1 2, 

2 = J 1 2 - 2J 1 2  + 2) 1 2- 2v' 1 2  + ... ; 

with k = 2, b = 3, and a =  19 ,  

2 = J 1 9 - 3J 1 9  + 3; 1 9 - 3v' 1 9  + · · ·. 

(2) Any positive number r can be the limit of the sequence Xn . This is the case be
cause we may first choose a positive k < r such that r - k ::S k, and then let 
b = r - k and a = k2 + bk + b2. Note that since b = r - k < 1.9k, we have 
limn->oo Xn = k + b = r .  By this construction, we may also· claim that any pos
itive rational number r can be the limit for a sequence Xn for some appropriate 
rational numbers a and b. 

For instance, with r = 1 ,  k = �. b = � . and a =  �. 

1= 
3 1 
- + -
4 2 
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and with r = 1 ,  k = �. b = � . and a = �. 

However, if we require a, b, and limn�oo Xn all to be positive integers, then since 
limn�oo Xn = k + b > b 2: 1 ,  the limit limn�oo Xn will have to be greater than 1 .  On 
the other hand, for any integer r 2: 2, we may choose k,  b, and a as above, except that 
k will now be a positive integer. Consequently, b = r - k and a = k2 + bk + b2 will 
also be positive integers, and limn-+oo Xn = k + b = r is an integer. 

For example, with r = 2, k = 1 ,  b = 1 ,  and a = 3 ,  

2 = .j 3 + J 3 - J 3 + ./3 - 0 0 0 ; 

with r = 3, k = 2, b = 1 ,  and a = 7, 

3 = .j 7 + J 7 - J 7 + ./7 - 0 0 0 ; 

with r = 4, k = 3, b = 1 ,  and a = 1 3 ,  

4 = / 1 3  + Jl3 - Jl3 + ./ 1 3- 0 0 0 ; 

with r = 4, k = 2, b = 2, and a = 1 2, 

4 = .j 1 2  + 2J 1 2  - 2J 1 2  + 2./ 1 2  - 0 0 0 ; 

with r = 5, k = 4, b = 1 ,  and a = 2 1 ,  

5 = .j 2 1  + J 2 1  - J 2 1  + ./2 1  - 0 0 0 ; 

with r = 5, k = 3, b = 2, and a = 1 9, 

5 = .j 1 9  + 2J 1 9- 2J 1 9  + 2./ 1 9 - 0 0 0 ; 

with r = 5, k = 3, b = 2, and a = 1 9, 

5 = / 1 9  + 3J1 9 - 3)1 9  + 3./ 1 9 - 0 0 0 0 

Sets of nests: a broader view 

Let's step back now from our detailed calculations and proofs concerning individual 
nests and look at all of this from another perspective. Indeed, let 's  literally distance 
ourselves from any specific nest and view the formation which it and its related nests 
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create on the real line . Since much of the research here i s  still open, we ' ll discuss it 
somewhat informally. 

Consider the set S2, all nests of the form 

where the succession of ±'s  signifies all possible combinations of + and- .  Assuming 
each of these infinite nests has a limit, (which they almost certainly do, but which we 
have not yet proven,) we will indicate the nests and their limits by the same designa-

tion. The reader can see that the minimum of these nests J 2 - j 2 + J 2 + .j2 + · · · 

with +'s  continuing, equals zero, and the maximum j2 + j2 + J2 + .j2 + · · · 

equals 2. All the others lie between 0 and 2. Three sets of questions present them
selves: 

1 .  Can two different nests be equal, i .e . ,  can two different nests have the same limit? 
If not, how do we determine which is greater? 2. How big is the set S2? Is it countable or uncountable? 

3. What does the set look like? If it is uncountable, does it have a nonempty interior? 

As for the first set of questions,  two different nests can never be equal to each other. 
We can in fact determine which is greater as follows: Reading left to right, find the first 
position at which they differ in sign. One of them, s+, has a ' + ' in this position, and 
the other, s _ has a '- ' .  To the left of this position they are exactly the same. If there 
are an even number of- 's to the left of this position, then s_ < s+, but if there are 
an odd number of- 's,  then s+ < s_. To answer the second set of questions, note that 
since two different nests in S2 are never equal, there is a one-to-one correspondence 
between S2 and the set of all the decimals between 0 and 1 as written in binary. We 
might let + correspond to 0 and - correspond to 1 .  Thus, S2 is uncountable. The 
third set of questions is the most intricate, and calls for a paper of its own. At this 
stage of extensive but incomplete investigation, S2 does not seem to have any interior. 
Indeed it does not even seem to be dense anywhere. Its points are separated by infinite 
sequences of "gaps" - intervals containing no points of S2 - whose lengths decrease 
nearly geometrically. There are countably many such sequences, without any shared 
gaps, giving S2 a complex, fractal-like structure. (The reader might like to verify that 
the largest such "gap" is the interval between 

/2- J 2- J 2 + .J2 + . . .  

(where the +'s continue indefinitely) and 

/2 + J 2 - J 2 + .J2 + . . .  

(again, the +'s  continue indefinitely). This, and other similar discoveries, point to an 
unusual structure of the set S2 yet to be specified. The same consideration can be given 
to sets Sa of the form 
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with a being integral, rational, or simply real, as long as the nests themselves are real . 
Conjunctions of these sets, many of whose elements coincide, as we've seen above, 
create even more intricate sets, as yet unexplored. 

Further research 

There are two further interesting avenues of research which we've probed, (and no 
doubt many more that we haven't .) We might extend our earlier examples by consider
ing those cases in which the signs inside the nested radicals alternate in "blocks ." For 
instance, for a sequence in which the signs alternate in a block of 4 in the pattern +,  
+,  + , - , one may define 

Xo = Ja, Yn = Ja + bxn, Zn = Ja + byn, Wn = Ja + bzn, 

and Xn+! =)a- bwn 

for each natural number n. We invite the readers to find conditions on the numbers a and b so that each of the sequences Xn, Yn· Zn, and Wn will converge, and find the 
numbers which are their limits. While the precise solution is certainly formidable, we 
are assured that the limits of any such sequence must, once again, be an algebraic 
number and never transcendental . 

We might also consider the curious correspondence between sequences of nested 
radicals and continued fractions: for any positive numbers a and b, 

! a+ bJ a+ b.j a + · · · = b + a b+ _
a

_ b+··· 

since both limits satisfy the quadratic equation x2 - bx - a = 0. 
Likewise, for any positive numbers a and b such that a 2: b2, 

! a - bJ a - b.j a - · · · = (-b) + 
a 

a , 
(-b) + (-b)+ 

since both limits satisfy the quadratic equation x2 + bx - a = 0. How far can this 
equivalence between nested radicals and continued fractions be extended? 

These are some of the questions which remain to be explored. 
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The partial fraction decomposition of a general rational function over the real numbers 
has been routinely treated in calculus texts, where the procedure is normally taught, 
via the technique of undetermined coefficients . That is, students are told that a given 
rational function p0(s)jv(s) is a sum of terms (called partial fractions) of the form 

and 
(s2 + as + b )k ' 

where A j ,  Bk> and Ck are real constants . The partial fractions are determined by the 
linear factors s - y and irreducible quadratic factors s2 + as + b of the denominator 
v (s), where the powers j and k occur up to the multiplicity of the factors . After finding 
a common denominator and equating the numerators students are left with a system of 
linear equations to solve for the undetermined coefficients Aj , Bk . Ck. Even when the 
multiplicities are relatively small such a scheme quickly becomes unwieldy. Moreover, 
at this level the students are probably not conversant enough with linear algebra to be 
able to follow an explanation of why this procedure works. 

As has been observed numerous times, there is an alternative algorithmic method for 
partial fraction decompositions that primarily involves repeated division by polynomi
als. This method is described in the classic texts by Chrystal [2] (see pages 151-159) 
and van der Waerden [6] (Pages 88-89). In versions that are appropriate for elementary 
calculus and differential equations classes, this method for partial fractions has been 
presented in 1 943 by Boldyreff [1], in 1 972 by Hamilton [3], and again in 1 988 by 
Scott and Peeples [5]. None of these papers reference the others, so it is presumably a 
result that is frequently rediscovered, and surprisingly, not as well-known as it should 
be. The algorithmic method has the advantage that it is constructive (assuming the fac
torization of the denominator), recursive (meaning that only one coefficient at a time is 
determined), and self checking. The goal of this paper is to present the partial fraction 
decomposition algorithm in a format that is amenable to recursive hand calculations in 
calculus or differential equations classes. Additionally, the calculation scheme will be 
structured so as to employ only real number arithmetic and evaluation of polynomials 
with real coefficients. These are calculations that are done on the coefficients of the 
polynomials involved, and hence we refer to the method as synthetic partial fraction 
decomposition, due to the use of synthetic division by linear and quadratic polynomi
als .  

The algorithmic decomposition into partial fractions is based on a simple lemma, 
which is most convenient to state in the form expressed by Scott and Peeples [5]. 

LEMMA 1. Suppose t(s) E �[s] is an irreducible real polynomial (so that it is 
either linear or quadratic) which divides the denominator v(s) of a proper rational 
function p0(s)jv(s) E �(s). Hence v (s) = t n(s)q(s) where t(s) and q(s) are rela
tively prime. Then there are unique polynomials C 1 (s) and p1 (s) with deg C 1 (s) < 
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deg t (s) such that 

Po(s) Po(s) C, (s) p, (s) 
= = ---- + --�-- --

v(s) t n(s)q(s) t n(s) t n-i(s)q(s) 

The polynomials C 1 (s) and p1 (s) are given by 

C1 (s) = [p0(s)]j[q(s)] and Pi (s) = (po(s)-C, (s)q(s))/ t(s). 

17 

( 1 )  

The quotient C1(s) = [p0(s)]j[q(s)] takes place in the congruence class field 
JR[s]/(t(s)) (which is isomorphic to lR or C), where the symbol [f(s)] means the 
congruence class of the polynomial f(s) in JR[s]/(t(s)); the formulafor p1(s) uses 
division in JR[s ]. 

The proof of this lemma is straightforward. Equation ( 1 )  is equivalent to the poly
nomial equation 

Po(s) = C, (s)q(s) + t(s)p1(s). 

This equation can be solved (uniquely) for C1 (s) since the equation p0(s) = Xq(s) 
is uniquely solvable in the congruence class field JR[s]/(t(s)) because [q(s)] i= [0] E 
JR[s ]/ (t (s)). Since the elements of JR[s ]/ (t (s)) are represented uniquely by polynomi
als of degree less than the degree of t(s), we have shown the existence and unique
ness of C1(s), and p1(s) exists (and is unique) because of the congruence identity 
[p0(s)-C1(s)q(s)] = [0]. 

In case t(s) = s-y is linear, then C1 (s) is the constant p0(y)jq(y). In case t(s) = 
s2 + as + b is an irreducible quadratic then the polynomial C 1 (s) has degree at most 1 
so it has the form C 1 (s) = As + B,  and in place of the congruence arithmetic described 
above, the coefficients can also be computed from the complex equation 

A + B = 
Po(Y) y 
q(y) , (2) 

where t(y) = 0, by taking into account that A and B are real. Thus, if desired, the 
congruence arithmetic can be avoided. 

An application of Lemma 1 produces two items :  

• the partial fraction of  the form 

C1(s) 
t" (s) ' 

where C1 (s) is a constant when t(s) is linear and C1 (s) is linear when t(s) is 
quadratic, and 

• a remainder term of the form 

p, (s) 
t"-1(s)q(s)' 

such that the rational function p0(s)jv(s) is the sum of these two pieces. We can 
now repeat the process on the new rational function p1(s)/(t"-1(s)q(s)), where the 
multiplicity of t (s) in the denominator has been reduced by 1 ,  and continue in this 
manner until we have removed completely t(s) as a factor of the denominator. In 
this manner we have recursively produced a sequence, �"\c:i, . . . , �(;�), which we will 
refer to as the t(s)-chain for the rational function p0(s)jv(s). The following table 
summarizes the data obtained. 
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The t(s )-chain 

Po (s) 
tn (s )q (s )  

P I (s ) 
tn- I (s) q (s )  

Pn- I (s ) 
q (s )  

Pn (s) 
--

q (s)  

cl (s ) 
--

tn (s) 
C2 (s) 

---

tn- l (s ) 

Cn (s) 
--

t (s )  

MATH EMATICS MAGAZI N E  

From the table we get 

Po (s ) C1 (s) Cn (s) Pn (s) 
--- = -- + 0 0 0 + -- + -- . 
tn (s )q (s) rn (s) t (s )  q (s )  

By factoring another linear or  quadratic term out of  q (s) the process can be  repeated 
until one obtains the complete partial fraction decomposition. 

The production of the t (s) -chain for the rational function p0 (s)jv (s )  involves two 
calculations .  The calculation of C1 (s) = [p0 (s ) ]j[q (s )] and the subsequent calculation 
of p 1 (s) = (p0 (s) - C1 (s )q (s ) )j t (s ) .  We will describe the calculations separately for 
the two cases where t (s )  is linear and where t (s )  is an irreducible quadratic. 

The linear case 

Synthetic division. We begin with a reminder of synthetic division of a polynomial 
f (s) by a linear term of the form s - y . By the division algorithm we can write 

f(s) = j* (s) (s - y )  + do , (3) 

where do = f(y ) .  Suppose f(s) = Cnsn + · · · + CJS + Co and f* (s) = dnsn- I + 
· · · + d2s + d1 . Set dn+ l  = 0. Then Equation (3) implies ck = dk - ydk+ I  so that 
dk = ck + ydk+ 1 , for k =  n ,  . . .  , 0. If ik = ydk+�> then dk = ck + ik gives a recur
sive scheme for computing f* (s) and f(y) . Writing this recursion in tabular form 
gives the familiar version of synthetic division: 

LJ Cn Cn- 1 Cn-2 c2 CJ co 
in in- 1 in-2 iz i I io 

dn+ l  dn dn- 1 dn-2 dz dl � 
Note that the last line contains both the evaluation f(y)  = d0 , which we will indi
cate by enclosing it in a box, and the coefficients of the quotient polynomial f* (s) = 
(f (s ) - f(y) ) / (s - y ) .  

Synthetic PFD b y  a linear term. We now tum our attention to computing the t (s )
chain when t (s ) = s - y is a linear term dividing the denominator of a rational func
tion p0(s)jv(s )  with multiplicity n .  According to Lemma 1, we can write 

Po (s) 
v (s )  

Po (s) A 1  PI (s) + I , (s - y )n (s - y )n- q (s )  
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where A 1  = Po (y )jq (y ) and p 1  (s ) = (p0 (s) - A 1 q (s ) ) / (s - y ) .  Notice that we can 
write 

Po (s) - A 1 q (s )  
P 1 (s ) = =--------=s - y 

p�(s) (s - y )  + Po (Y ) - A 1  (q* (s) (s - y )  + q (y ) )  
s - y  

Synthetic division of both q (s) and p0 (s) by s - y produces q * (s ) ,  p0 (s ) ,  q (y )  and 
p0 (y ) .  Hence, these divisions produce both the coefficient A 1  = p0 (y )jq (y )  of the 
partial fraction A J / (s - y )n and the numerator p1 (s) = p0(s) - A 1 q * (s )  for the re
mainder term 

PI (s ) 
(s - y )n- l q (s )

. 

Now repeat the process until s - y is no longer a divisor of the denominator. This is 
the end of the s - y chain. Notice that at each stage the term q (s) in the denominator 
remains the same, so it is only necessary to do the division for this term once. The 
leftover term is Pn (s)jq (s) .  Also note that if q (s)  = 1 then q * (s )  = 0 and q (y )  = 1 ;  
thus, in this case, the algorithm reduces to a sequence of divisions by s - y . This 
special case is considered in the note by Kung [4] . 

An outline of one iteration of the synthetic PFD method has the following form. We 
assume the initial computation of q*  (s) and u = q (y ) have been made. We will use the 
convention that a polynomial p (s )  = cnsn + · · · + c 1 s  + c0 will be denoted by listing 
its coefficients p = Cn . . .  c1 c0 in order of decreasing powers of s .  The computation 
of A 1 and p1 (s ) is then summarized in the following scheme: 

_r_] Po 
Po CQJ 

A 1 q* 
P1 

On line 1 )  put the coefficients of p0 (s) .  On line 2) put the result of synthetic division 
by y. The boxed term, r 1 , is the remainder (= p0(y)) and determines A 1  = r 1ju. On 
line 3) put -A 1 times q* . Then p 1 , the sum of lines 2) and 3) ,  goes on line 4 ). 

We illustrate the synthetic PFD method by the following example. 

EXAMPLE 2. Find the partial fraction decomposition for the rational function 

2s4 - 8s3 - 10s2 + 8s 
(s + 1 ) 3 (s - 1 ) 3  

We begin with y = -1  and q (s)  = (s - 1? = s3 - 3s2 + 3s - 1 .  Synthetic division 
by s + 1 produces 

...=.!J 1 -3 3 - 1  
0 - 1  4 -7 

-4 7 1-sl 
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Therefore q* = 1 - 4  7 and u = - 8 . Hence, A ;  = - t. In the following table we 
provide the details to find the (s + I)-chain. Note that in the heading we put -q* = 

- 1  4 -7 to facilitate the calculation of -A;q* . 

The (s + 1)-chain 
A; -q* 

r; r; - 1  4 -7 - = -

u -8 
2s4 - 8s3 - 10s2 + 8s - 11 2 -8 - 1 0 8 0 Po 

(s + 1 )3 (s - 1 )3 0 -2 10 0 -8 
1 2 - 10 0 

---
8 � Po Ei] 

(s + 1 )3 - 1  4 -7 -A1q* 
2s3 -1 1s2 + 4s + 1 ..=!l 2 - 1 1  4 1 PI 
(s + 1 )2(s - 1 )3 0 -2 13 - 17 

2 2 - 13 17 l - 161 pj [!i] 
(s + 1 )2 -2 8 - 14 -A2q* 

-5s + 3  - 11 0 -5 3 P2 
(s + 1 ) (s - 1 ) 3 0 0 5 

- 1  0 -5 rn1 Pi 5] --

(s + 1 ) 1 -4 7 -A3q* 
s2 - 4s + 2 1 -4 2 P3 
(s - 1 )3 

The denominator of the last entry in the first column is of the form 
(s - y)»q (s) with y = 1 and q (s)  = 1 .  Thus the table may be extended to give 

the (s - I ) -chain on the remainder term s�;�:r2. Here are the details. 

The (s - 1)-chain 
A; -q* 

r; 0 - =r; u 
s2 - 4s + 2 _!_] 1 -4 2 P3 
(s - 1) 3 0 1 -3 

- 1  1 -3 QJ pj [;:] 
(s - 1 ) 3 0 0 -A4q* 

s - 3 ..!J 1 -3 P4 
(s - 1 )2 0 1 

-2 1 � p� [;] 
(s - 1 )2 0 

-
-Asq* 

1 
--

1 P5 
s - 1  
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We put the chains together to get the complete Partial Fraction Decomposition: 

2s4 - 8s3 - lOs + 8s 
(s + 1 ) 3 (s - 1 ) 3  

1 2 1 1 2 1 
= + - --- - + -- . 

(s + 1 ) 3  (s + 1 ) 3  s + l  (s - 1 ) 3  (s - 1 )2 s - 1  

The quadratic case 

2 1  

We now address the quadratic case. This case is admittedly more complicated but some 
familiar algebraic constructs will simplify the end calculations so that the quadratic 
synthetic PFD method will follow a pattern very similar to the linear case. 

Quadratic synthetic division. We begin by a brief review of quadratic synthetic 
division. Let f (s)  be any polynomial and t (s )  = s2 + as +  b a fixed quadratic. Then 
we can write 

Now suppose 

f (s )  = f* (s) (s2 + as + b) +  r1 s + ro . 

f (s )  = CnSn + Cn-JSn- l + · · · C J S + Co 
and /* (s) = dnsn-Z + dn-JSn-3 + · · · d3S + dz. 

If we set dn+ 1 = dn+Z = 0 then Equation 4 implies the following relations 

ck = dk + adk+ l  + bdk+Z· k = 2, . . .  , n ,  

c 1  = r 1  + adz + bd3 
co = ro + bdz. 

Solving for d2 , • • •  dn , r 1 , and ro gives 

dk = ck + ( -b - a) · (dk+Z dk+ J ) k = 2, . . .  , n ,  

r 1  = c1 + (-b - a) · (d3 dz) 
ro = co + (-b - a) · (dz d1 ) , 

(4) 

where we set d1 = 0 and, for use below, we set d0 = 0. In these formulas the dot 
product replaces the usual product found in synthetic division by a linear term. If 
ik = ( -b - a) · (dk+Z dk+ 1 )  then quadratic synthetic division takes on the following 
schematic form: 

-b -a I Cn Cn- 1 Cn-2 Cz c ,  co 
in in- 1 in-2 iz i 1  io 

dn+2 dn+ 1 dn dn- 1 dn-2 dz d, do 
jr, ro l 

Working from left to right we assume dn+Z· . . .  , dk+ 1 have been computed. Then dk = 
ck + h. for k = n ,  . . . , 2. To continue the established pattern, we insert d1 = do = 0 
and compute the remainder terms as r1 = c 1  + i 1 and r0 = c0 + i0 . The remainder is 
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put on a separate line. In examples, we will not write zero in for dn+2 and dn+ 1 •  The 
following example should convey the ease of use. 

EXAMPLE 3 .  Find the quotient and remainder in 

s5 + 3s4 + 4s3 + 4s2 - s + 3 
s2 + 2s + 3 

Quadratic synthetic division gives 

-3 -2 1 3 4 4 - 1  3 
0 -2 -5 - 1  -3 -9 

1 - 1  3 0 0 

l -4 - 6 1 
from which it follows that 

s5 + 3s4 + 4s3 + 4s2 - s + 3 -4s - 6 ----..,.------- = s3 + s2 - s + 3 + . 
s2 + 2s + 3 s2 + 2s + 3 

Multiplication by a linear term. In the algorithm that follows it will be useful to 
express the product of a polynomial by a linear term within the synthetic scheme. 
Suppose f(s)  = Cnsn + · · · + c 1 s + c0 is a polynomial and L(s)  = as +  b is a linear 
term. The product L (s) f (s) can be computed by a sort of sliding dot product. Express 

L (s )f (s) = dn+ I s
n+ I + · · · + d1 s + do . 

Let Cn+l  = 0 and c_ 1 = 0. Then a straightforward calculation gives 

dk = (b a) · (ck ck- I ) , 

for k = n + 1 ,  . . .  , 0. For example, if f (s)  = 2s3 - 3s2 + s + 4 and L(s)  = 2s - 1 
then ( - 1  + 2s) (2s3 - 3s2 + s + 4) would be written within the synthetic method as 

( - 1  2) . (2 -3 1 4) = (4 -8 5 7 -4) 
to give (2s - 1 ) (2s3 - 3s2 + s + 4) = 4s4 - 8s3 + 5s2 + 7s - 4. 

Synthetic PFD by a quadratic term. We now describe the synthetic partial fraction 
decomposition by an irreducible quadratic. Assume p0 (s) and v (s )  are real polynomi
als and that s2 + as + b is an irreducible quadratic that is a factor of v (s) of multiplicity 
n .  Then according to Lemma 1 and Equation (2) we have 

Po (s) 
v (s )  

Po (s) A t  + B , s  PI (s) 
�-------- + �--��--�---(s2 + as + b)n (s2 + as + b)n- I q (s )  

The coefficients of  the linear term can be  computed via the complex equation 

A + B - Po (y ) 
I I Y - q (y ) ' 

where y is a complex root of s2 + as + b, and 

Po (s) - (AI + B, s)q (s )  
P I (s ) = 

s2 + as + b 
. 
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We now describe how to determine both the linear term A 1 + B1 s and the new nu
merator p1 (s ) by means of the division algorithm in a manner similar to the linear 
case. 

To find A 1 ,  Bh and p1 (s) we apply quadratic synthetic division to p0 (s ) and q (s)  
to get 

and 

Po (s) * r1 s  + r0 
s2 + as + b = Po (s) + ....,s2:-+_a_s_+_b 

q (s) * ( ) 
u 1 s + uo 

....,....--=---- = q s + . 
s2 + as + b s2 + as + b 

We can now write 

( ) _ * ( ) _ (A + B ) * ( ) + 
r1 s  + ro - (A I + B1 s ) (u 1 s  + u0) 

PI s - Po s I J S q s 
s2 + as +  b 

. (5) 

Let F1 be the last term in Equation (5) .  Since p1  (s) is a polynomial the numerator of 
F1 must have s2 + as + b as a factor. Thus 

F1 = -BJ U J , 

the coefficient of s2 in the numerator. It also follows that y is a root of the numerator. 
Thus 

r1 y  + ro A 1  + B1 y  = ----U J Y + Uo 
(6) 

Noting (from the quadratic formula) that the complex conjugate of the root y of 
s2 + as +  b is -y - a, and that y (y + a) = -b, we can determine A 1  and B1 from 
Equation (6) by rationalizing the denominator: 

Let 

r1 y  + ro -u 1 (y + a) + uo A 1 + B1 y = ---u i y + uo -u J (y + a) + uo 
r 1 u 1 b - rou 1 a  + rouo + (r1 uo - rou 1 ) y 

buf - au 1 uo + u6 

Then after a short calculation we find 

RMU1 
A - --1 - UMU1 

and 
RJU1 

B - --1 - UMU1
• 

Let L 1 (s) = A 1 + B 1 s .  With L 1 and F1 determined by A 1 and B 1 we can rewrite 
Equation (5) as 

An outline of one iteration of the synthetic PFD method has the following schematic 
form. We assume the initial computation of q * (s )  and the remainder u 1 s + u0 have 
been made. 



2 4  
-b -a l Po 

Po 

P I 
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On the first line we place p0 • We divide p0 synthetically by s2 + a s  + b to get the 
quotient, p0 , and the remainder I r1 r0 I · Both L 1 and F1 are determined according to 
the formulas above. Place -L 1 q* on the fourth line and F1 on the fifth line. The sum 
of the second, fourth, and fifth lines is p 1 • 

We illustrate the synthetic PFD method in the following example. 

EXAMPLE 4. Find the partial fraction decomposition for the rational function 

2s3 + 8 
(s2 + s + 2)3 (s2 + 2s + 2) 2 

• 

Let q (s) = (s2 + 2s + 2)2 = s4 + 4s3 + 8s2 + 8s + 4. Synthetic division by s2 + 
s + 2 gives 

-2 - 1 1 1 4 8 8 4 
0 - 1  -5 -9 -6 
1 3 3 0 0 

l - 1  -2 1 
Thus q* = 1 3 3 and U = [u i uo] = [- 1  -2] . With the notation as above we 
have 

From this it follows that 

and 

and hence we get 

and 

-2ri - ro 
A; = ---,---

4 

-2ri + ro 
B; = 

4 

-2ri + ro 
F; = 

4 

-2r1 - r0 -2r1 + r0 
L; (s) = 

4 
+ 

4 
s .  

For the purposes o f  exposition w e  will first construct the synthetic PFD table and use 
it to construct the s2 + s + 2-chain. We also will write -q* = - 1  - 3 - 3 in the 
heading to facilitate the calculation -L;q* . 
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Synthetic calculations for the (s2 + s + 2)-chain 

Fi Li -q* 

-2r, + ro -2q - ro -2r, + ro - 1  -3 -3 
4 4 

+ 
4 

s 

-2 - 1 I 2 

0 
2 

4 -2 + 4s 

-4 - 1 0  -6 
-2 - 11 -4 - 1 0  -4 

0 4 14 

-4 -6 
0 - 1 0  + Os 1 1 0  

1 0  30 30 
0 

-2 - 1 1 10  26 24 

0 - 1 0  -20 1 0  0 0 
-7 -9 - 7s 1 1 6  -4 1 

7 30 48 27 

-7 

7 30 48 30 

We can now read off the (s2 + s + 2)-chain. 

The remainder term 

The (s2 + s + 2)-chain 
2s3 + 8 -2 + 4s 

(s2 + s + 2)3 (s2 + 2s + 2)2 (s2 + s + 2)3 
-4s3 - 10s2 - 4s + 8 - 10 

(s2 + s + 2)2 (s2 + 2s + 2)2 (s2 + s + 2)2 
10s2 + 26s + 24 -9 - 7s 

(s2 + s + 2) (s2 + 2s + 2)2 (s2 + s + 2) 
7s3 + 30s2 + 48s + 30 

(s2 + 2s + 2)2 

7s3 + 30s2 + 48s + 30 

(s2 + 2s + 2)2 

has denominator of the form 

(s2 + 2s + 2)2q (s )  

with q (s )  = 1 .  With this data w e  have q*  = 0 ,  U = [0 1 ] ,  and 

M = [ !2 �] . 

2 5  

0 0 8 Po 

-2 - 2  4 

- 2  0 0 Po � 00 6 - L , q *  
4 F, 
8 PI 12 

Pi 20 1 00 
- Lzq *  

Fz 
Pz 

Pz 00 
-L3q*  

F3 
P3 
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It follows that A ;  = r0 and B; = r 1  from which we get 

F; = 0  and L; = r0 + r1 s .  

The synthetic PFD table is 

Synthetic calculations for the (s2 + 2s + 2)-chain 

F; L; -q* 
0 ro + r1 s 0 

-2 -2 1 7 30 48 30 Po 
0 - 14 -46 -32 
7 16 0 0 Po 

0 -2 + 2s 1 2 -2 1 [II 
0 0 -L 1 q* 

0 F1 
7 16 

From this table w e  get the (s2 + 2s  + 2)-chain: 

The (s2 + 2s + 2)-chain 
7s3 + 30s2 + 48s + 30 -2 + 2s 

(s2 + 2s + 2)2 (s2 + 2s + 2)2 
1 6 + 7s 

s2 + 2s + 2 

The complete partial fraction can now be read off from the chains : 

2s3 + 8  -2 + 4s - 10 -9 - 7s -:-;;----:-:--,;- + + --..,.---(s2 + s + 2)3 (s2 + 2s + 2)2 (s2 + s + 2)3 (s2 + s + 2)2 (s2 + s + 2) 

R E F E R E N C ES 

-2 + 2s 16 + 7s + (s2 + 2s + 2)2 + s2 + 2s + 2 · 
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A B r i ef H i story of I m poss i b i l i ty 

J E F F SUZU K I  
Brooklyn Col l ege 

Brooklyn,  NY 
jeff _suzuk i  ®yahoo.com 

Sooner or later every student of geometry learns of three "impossible" problems : 

1 .  Trisecting the angle: Given an arbitrary angle, construct an angle exactly one-third 
as great. 

2.  Duplicating the cube: Given a cube of arbitrary volume, find a cube with exactly 
twice the volume. 

3 .  Squaring the circle:  Given an arbitrary circle, find a square with the same area. 

These problems originated around 430 BC at a time when Greek geometry was advanc
ing rapidly. We might add a fourth problem: inscribing a regular heptagon in a circle. 
Within two centuries, all these problems had been solved (see [3, Vol .  I, p .  2 1 8-270] 
and [1] for some of these solutions). 

So if these problems were all solved, why are they said to be impossible? The "im
possibility" stems from a restriction, allegedly imposed by Plato (427-347 B C), that 
geometers use no instruments besides the compass and straightedge. This restriction 
requires further explanation. For that, we tum to Euclid (ft. 300 BC),  who collected and 
systematized much of the plane geometry of the Greeks in his Elements. 

Euclid's  goal was to develop geometry in a deductive manner from as few basic 
assumptions as possible. The first three postulates in the Elements are (in modernized 
form) : 

1 .  Between any two points, there exists a unique straight line. 

2. A straight line may be extended indefinitely. 

3. Given any point and any length, a circle may be constructed centered at the point 
with radius equal to the given length. 

These three postulates correspond to the allowable uses of compass and straightedge: 
to draw a line that passes through two given points ; to extend a given line segment 
indefinitely; and to draw a circle about any given point with any given radius .  To 
solve a problem using compass and straightedge means to use only these operations, 
repeated a finite number of times. The construction's  validity can then be proven using 
only the postulates of Euclidean geometry. 

For example, consider the problem of duplicating the cube. In order to duplicate a 
cube with a side length of a, it is necessary to construct a line segment of length �a. 
One of the simpler solutions,  presented by Menaechmus around 350 BC,  is equivalent 
to locating the intersection point of the parabola ay = x 2 and the hyperbola xy = 2a2 ; 
these two curves intersect at the point (�a, �a). Since this solution requires the 
use of the hyperbola and parabola, it is not a compass and straightedge solution. 

A more subtle problem occurs with the trisection problem. Suppose we wish to 
trisect L.B 0 E, which we may assume to be the central angle of arc BE  in a circle (see 
Figure 1 ) .  There are several neusis ("verging") solutions, one of which is the following. 
Draw BC parallel to 0 E and then draw C A with the property that DA = 0 B (the 
radius of the circle) .  It is relatively easy to prove that L.DOA = �L.B O E  (a proof 
we will leave to the reader) . We can accomplish this construction with compass and 
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straightedge as follows :  Open the compass to fixed length equal to the radius 0 B . 
Using C as a pivot, swing the straightedge around, using the compass to measure out a 
length 0 B from the point where the straightedge crosses the circle, until you find the 
point D where the length D A = 0 B .  

Figure 1 Neus is  tr i section of an ang le .  

A 

There are at least two objections that can be raised to this "compass and straight
edge" solution. First, the postulates only guarantee the existence of a line between two 
points , or the extension of an existing line; hence there is no guarantee that the line like 
C A ,  specified by a point C and a length D A ,  even exists. Second, the postulates only 
allow us to measure out a length by means of a circle of known center. This means we 
cannot measure the length D A equal to 0 B until we locate D. Thus, even though this 
solution uses compass and straightedge, it is not a compass and straightedge solution. 

Even if we restrict ourselves to the canonical uses of the compass and straightedge, 
how can we distinguish between constructions that have never been done and those 
that are actually impossible? Before 1 796, no compass and straightedge construction 
for a regular heptadecagon was known, but in that year Gauss discovered how to in
scribe one in a circle. Might there be some as-yet-undiscovered means of trisecting 
an angle or duplicating the cube using compass and straightedge? In 1 837 an obscure 
French mathematician named Pierre Wantzel ( 1 8 14-1 848) proved this could not be: 
cube duplication and angle trisection are in fact impossible, as is constructing a regu
lar heptagon or squaring the circle. In the following we' ll trace the steps leading up to 
Gauss ' s  construction of the heptadecagon and Wantzel ' s  proof of impossibility. 

Descartes 

The first important step towards proving certain constructions impossible was taken by 
Rene Descartes ( 1 596-1650) in his The Geometry ( 1 637). Descartes's key insight was 
that by identifying the lengths of line segments with real numbers, one could restate a 
geometric problem as an algebraic one, express the solution symbolically, then convert 
the algebraic expression into a geometric construction procedure. 

In order to take this last step, we must develop an arithmetic of lines. Let AB and 
CD be two line segments (where we will assume CD is shorter than AB) .  Compass 
and straightedge techniques from the Elements allow us to find line segments that 
correspond to the sum AB + CD,  difference AB - CD, and q · AB (for any positive 
rational q) .  The problem arises when trying to interpret the product AB · CD. Euclid 
and others identified this product as the rectangle whose adjacent sides were equal 
in length to A B and CD.  This would mean the arithmetic of line segments was not 
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closed under multiplication; moreover, it would make the division o f  two line segments 
impossible to define. 

Descartes realized that the theory of proportions could be used to identify the prod
uct of two line segments with another line segment, provided we had a line segment of 
unit length. Imagine two lines intersecting at B at any angle whatsoever, and say we 
wish to multiply BD by B C .  Mark off BA equal to the unit, and join AC (see Figure 
2). Draw D E  parallel to AC .  Then triangles BAC,  B D E  are similar, and we have 
the ratio B E  : B D = BC : B A .  This corresponds to the equality of the two products 
B E · BA = BC · B D .  Since BA is equal to the unit, we can thus identify the line seg
ment B E  with the product BC · B D .  Thus the product of two line segments is another 
line segment. Division can be handled in virtually the same way. 

E 

D A B H 

Figure 2 M u lt ip l icat ion and roots . 

G F 

Proposition 14  of Book II of the Elements gives the construction technique for find
ing square roots (literally the side of a square equal in area to a given rectangle), which 
Descartes modified to extract square roots [7, p .  5 ] .  Suppose we wish to find the square 
root of G H. Extend G H by G F equal to the unit, then draw the circle with F H as its 
diameter. The perpendicular G I will equal the square root of G H (see Figure 2). 

Suppose we begin with a line segment AB (which we can take to be our unit) . 
If we can construct a line of length k · A B  using the above techniques, we say that 
k is a constructible number (and k · A B  is a constructible line segment) . In general, 
k is a constructible number if it is rational, or the root of a quadratic equation with 
constructible coefficients . A figure is constructible if all the line segments required 
for its construction are constructible. Moreover, given a constructible figure, any line 
segment we can obtain from it (e.g . ,  the diagonal of a square) is constructible. For 
example, if we could square the circle, then .jii would be constructible; equivalently, 
if .jii is inconstructible, squaring the circle is impossible. 

This identification of a geometric problem with an algebraic problem allows us to 
phrase the problem of constructibility in terms of the roots of a specific equation: if 
the root is a constructible number, the corresponding geometric problem can be solved 
using compass and straightedge alone. Duplicating the cube would allow us to find a 
line of length 4'2, which is a root of the equation x 3 - 2 = 0. Constructing a regular 
n-gon would allow us to find a line of length sin 2:; ,  which is the imaginary part of 
one of the roots of x n 

� 1 = 0 (because of this ,  the problem of finding the roots of 
x n - 1 = 0 is also known as the cyclotomy problem). 

Trisection of an angle corresponds to a cubic equation as follows. Given a circle 
with center 0 and unit radius, with central angle A 0 C equal to 3e . We wish to find 
point B on the circle where angle B O C  is equal to e .  If we drop A D  and B E  per
pendicular to 0 C, we have A D  = sin 3e,  B E  = sin e .  These quantities are related 
through the identity: 

sin 3e = 3 sin e - 4 sin3 e 
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Since angle A 0 C i s  the given angle, then sin 3e  i s  a known quantity which we can 
designate as l .  Thus if the real roots of l = 3x - 4x3 are not constructible, trisection 
of the corresponding angle is impossible. 

Vandermonde and Lagrange 

The next step towards answering the constructibility problem came from the work of 
Alexandre-Theophile Vandermonde ( 1735-1796) and Joseph Louis Lagrange ( 1 736-
1 8 1 3) .  Vandermonde's  [8], presented to the Paris Academy in 1770, and Lagrange' s  
[ 6], presented to  the Berlin Academy in  1 77 1 ,  examined why general solutions to 
equations of degree 3 and 4 existed. Both came to the same conclusion independently: 
Our ability to solve these equations is due to the fact that we can find the value of 
certain expressions of the roots without knowing the roots themselves .  

To understand their methods, consider the quadratic equation x2 - px + q = 0, 
with roots x = a and x = b .  Thus p = a + b and q = ab.  Next, take any function 
of the roots of this equation. Some functions, such as f (r1 , r2) = r1 + r2 , have the 
same value regardless of which root we regard as r1 and which root we regard as r2 ; 
these are called symmetric functions .  It was widely believed (though not proven until 
the middle of the nineteenth century) that every symmetric function of the roots of a 
polynomial could be expressed as a rational function of the coefficients. In this case, 
f (a ,  b) = f (b ,  a) = p .  

On the other hand, consider a function like g (r1 , r2) = r 1  - r2 • Depending on  which 
root we call r1 and which root we call r2 , g might take on one of two possible values, 
a - b or b - a. In order to find the values of this non-symmetric function of the roots, 
Lagrange let the k distinct values be the roots of a kth degree equation. In our example, 
the two values of g would be the roots of: 

(y - (a - b)) (y - (b - a))  = y2 - (a - b)2 

A little algebra shows us that (a - b)2 = (a + b)2 - 4ab.  Since we know the values 
of a + b and ab,  we can determine, even without knowing the roots, that 

(a - b)2 = p2 - 4q . 

Thus the two different values of a - b will be the two roots of y2 - (p2 - 4q) = 0. 
Hence a - b = J p2 - 4q or -J p2 - 4q . It will make no difference which we 

choose ; for example, we might let a - b = J p2 - 4q . To solve for a and b separately, 
we need a second equation, which we can obtain from the coefficients: a +  b = p .  
These two equations give us the system: 

a + b = p  a - b  = Jp2 - 4q 

Hence a = 
p+� , and b = 

p-� . 
Both Vandermonde and Lagrange considered the problem of finding the nth roots 

of unity, which would be the roots of xn 
- 1 = 0. Lagrange noted the correspondence 

between the roots of xn - 1 = 0 and the cyclotomy problem; further, he observed 
that if n is prime, all of the roots can be generated by the successive powers of any 
root except x = 1 .  This allowed him to write equations relating the roots ; solving the 
equations would give the roots of unity. Lagrange used his method to find the roots 
of unity for n = 3 through n = 6 (all of which can be found using only square roots) ,  
while Vandermonde found the roots of unity up to n = 1 1  using similar methods . 
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Gauss 

According to legend, Carl Friedrich Gauss ( 1 777-1 855) discovered the constructibility 
of the regular heptadecagon in 1 796; this inspired him to choose mathematics as his 
future field of study, despite the indifferent reception of his discovery by A. G. Kastner 
at Gottingen. Gauss ' s  main contribution to the problem of cyclotomy was inventing a 
method of splitting the roots of unity into sets where the sum of the roots in each set 
was the root of an equation with determinable coefficients . He described his method 
in [2] , where the solution to the cyclotomy problem appeared as one application of 
the theory of quadratic residues. While Gauss's discovery was unprecedented, it was a 
straightforward, albeit clever, application of the ideas of Lagrange and Vandermonde. 

The nth roots of unity are solutions to the equation xn - 1 = 0. Obviously any root 
r must satisfy rn = 1 .  If n is the least power of r that is equal to 1 ,  then r is said to be 
a primitive nth root of unity. For example, the roots of x4 - 1 = 0 are ± 1 ,  ±i . Since 
1 1 = 1 and ( - 1  )2 = 1 ,  then neither 1 nor - 1  is primitive. On the other hand, the least 
power of i or -i that gives 1 is the fourth power; thus i and -i are primitive roots, and 
their powers will generate all the roots ; for example: 

i , i 2 = - 1 , · 3 0 l = - l ,  

In general, a s  Lagrange noted, i f  n i s  prime, then there are n - 1 primitive roots of 
unity. 

As we note above, constructibility of the regular n-gon corresponds to constructibil
ity of the roots of xn - 1 = 0. We' ll illustrate Gauss's general method by finding the 
5th roots of unity. These would be solutions to the equation x5 - 1 = 0. There is one 
(non-primitive) root x = 1 .  Removing a factor of x - 1 we obtain the equation 

which is called the cyclotomic equation. All primitive fifth roots r must satisfy this 
equation. 

Gauss considered a sequence whose first term is a primitive root, and where each 
term is some (constant) power of the previous term. For example, if we take r and cube 
it repeatedly, we obtain: 

Since r is a root of x5 - 1 = 0, then r5 = 1 .  Hence the above sequence simplifies to r ,  
r3 , r4 , r2 , r, . . .  , and all the roots appear in this sequence. O n  the other hand, suppose 
we take r and repeatedly raise it to the fourth power, obtaining the sequence: 

In this case, the only distinct members of the sequence are r and r4 • 
Note that the remaining roots, r2 and r3 , are the squares of the two distinct terms of 

this last sequence: (r )2 = r2 , and (r4) 2 = r8  = r3 • More generally, suppose n is prime 
and r is a primitive nth root of unity. Gauss showed that our sequence of powers will 
have k distinct elements, where k is a divisor of n - 1 .  Moreover the remaining roots 
(if k is not equal to n - 1 )  can be separated into sets of k distinct elements, each of 
which is a power of a root of the original set. 

For example, consider the n = 7 case, and a primitive root p .  The sequence 
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contains only two distinct roots, p and p6 • The squares of these are p2 , p 1 2 = p5 , and 
the cubes are p3 , p4 . Thus the six roots have been partitioned into three sets, { p, p6 } , 
{ p2 , ps } , and { p3 , p4 } . 

Note that the decomposition is not unique; for example, the sequence 

contains three distinct roots, p, p2, and p4 ; the remaining roots are the cubes of these 
roots and the six roots will be partitioned into two sets, { p, p2 , p4 } , and { p3 , p5 , p6 } . 

Returning to the n = 5 case, we have split the roots into two sets : { r, r4 } and 
{ r2 ,  r3 } • Gauss then considered the sum of the roots in each set (designating these 
sums as "periods"), and let the sums be the roots of an equation: 

(y - (r + r4) ) (y - (r2 + r3) )  = y2 - (r4 + r3 + r2 + r)y + (r + r4) (r2 + r3 ) 
= y2 - (r4 + r3 + r2 + r)y + (r3 + r4 + r6 + r?) 
= y2 - (r4 + r3 + r2 + r) y + (r4 + r3 + r2 + r) 
= y2 + y - 1  

where we made use of the fact that r satisfies the equation x4 + x3 + x2 + x + 1 = 0. 
Hence the two periods r + r4 and r2 + r3 correspond to the two roots of the quadratic 
equation y2 + y - 1 = 0. We find the roots are y = - I�J5 . 

One of these roots corresponds to r + r4, and the other corresponds to r2 + r3 • In 
principle it makes no difference which we assign to r + r4, though in practice it is 
convenient if r is the principal fifth root of unity cos 2; + i sin 2; . Gauss noted that 
we could find this root numerically and see which of the two roots of y2 + y - 1 = 0 
was equal to r + r4 •  Alternatively, we might note that r + r4 will have a positive real 
component; hence r + r4 = - I iJ5 . 

To find r ,  we can construct a quadratic equation with r and r4 as roots : 

Note that the coefficients of this equation are constructible numbers ; hence its roots 
will also be constructible. These roots are: 

One of these will be the principal fifth root of unity, and the other will be its fourth 
power. Since the principal fifth root of unity is equal to cos � + i sin 2; , we can, as 
Gauss suggested, approximate the sine and cosine values and determine which of the 
two roots corresponds to the principal root (which will tell us, among other things, 
cos 2; = - I!J5 and sin 2; = �J10  + 2.J5). Since the sin 2; is constructible, so is 
the regular pentagon, a fact known to the ancients : Euclid's construction appears as 
Proposition 1 1  of Book IV (though Ptolemy gave a much easier construction in the 
Almagest) . 

On the other hand, consider the regular heptagon. In the above, we found that the 
roots can be separated into two periods, p + p2 + p4 and p3 + p5 + p6 • Letting the 
sum of the roots in the set be the roots of a quadratic equation and reducing as before 
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we obtain: 

(y - (p + p2 + p4) ) (y - (p3 + p6 + p5) )  = y2 + y + 2 

with roots y = - I±2
.J=7 ; if p is the principal root, then p + p2 + p4 has a positive 

imaginary component so - 1 +
2
.J='f = p + p2 + p4 and - I -

2.J=7 = p3 + p5 + p6 .  
The next step would be letting p, p2 , and p4 be the three roots of a cubic equation: 

(z _ p) (z _ p2) (z _ p4) = z3 _ (p + P2 + p4)z2 + (p3 + P6 + ps)z _ P7 

= z3 - ( - 1 +
2.J=7) z2 + ( - 1 

-2.J=7) z - 1 

While we can solve the cubic equation, we cannot do so by means of basic arithmetic 
operations and square roots alone; we must extract a cube root. Hence it would appear 
that the primitive seventh root of unity (and consequently the regular heptagon) is 
inconstructible. 

The preceding example suggests the following: Suppose we wish to construct a 
regular n-gon, where n is prime. If n - 1 has any prime factors other than 2, then at 
some point in separating the roots, we will have to solve an equation of a degree higher 
than 2. Hence constructing a regular n-gon using this method requires n = 2k + 1 . 

We can go a little further. If k has any odd factors, then 2k + I is composite ; this 
follows because if k = pq and q is odd, xPq + 1 has a factor of xP + 1 .  Thus a regular 
n-gon, where n is prime, might be constructible if n is a so-called Fermat prime, with 
Fm = 22m +  1 .  The known Fermat primes are 3, 5, 17 ,  257, 65537; it is unknown if 
higher Fermat primes exist. 

In any case, consider n = 17 .  The corresponding cyclotomic equation has 1 6 roots . 
Gauss split these into two sets of eight roots apiece; hence, a quadratic equation could 
be used to find the sum of eight of the roots . Each set of eight could in tum be split into 
two sets of four; again, a quadratic equation could be used to find the sum of four of 
the roots . Each set of four could be split into two sets of two, and the sum of two of the 
roots could be found. Finally the sets of two could be broken down into their individual 
roots, so a primitive 17th root of unity could be found. Since none of the equations has 
a degree higher than 2, the roots are constructible; hence a regular heptadecagon can 
be constructed using only compass and straightedge. 

Wantzel 

Gauss 's method suggests but does not prove the constructibility of the 257- and 65,537-
gons (we need Sylow's Theorem to guarantee constructibility) ;  likewise, it suggests but 
does not prove the impossibility of constructing a regular heptagon. 

The first proof of the impossibility of certain geometric constructions came from 
Pierre Wantzel ( 1 8 14- 1848) in [9] ( 1 837). Wantzel began by considering a system of 
quadratic equations (which for brevity we will call a Wantzel System) :  

x� + Ax1  + B  = 0 
xi + A 1x2 + B1 = 0 
x� + A2x2 + B2 = 0 

X� + An- !X2 + Bn- ! = 0 
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where A, B are rational functions of some given quantities ; A � o  B1 are rational func
tions of the given quantities together with x1 (and hence the coefficients of the second 
equation are constructible numbers) ;  A2 , B2 are rational functions of the given quan
tities, together with x � o x2 , and in general Am . Bm are rational functions of the given 
quantities and the variables x� o x2 , . • . , Xm . Note that Gauss ' s  method of showing the 
constructibility of a pentagon or heptadecagon made use of precisely such a system; 
in the case of the pentagon the Wantzel system is :  

l + y - 1 = 0 

z2 - yz + 1 = 0 

More generally, every constructible number r corresponds to some Wantzel system. 
Consider any of these equations x�+ 1 + AmXm+ l  + Bm = 0. Remarkably, the ratio

nal functions Am , Bm can always be reduced to a linear function of the form A�_ 1 Xm + 
B�_ 1 , where A�_ 1 and B�_ 1 are rational functions of the given quantities and the vari
ables x 1 ,  x2 , • • • , Xm- 1 • This reduction can be performed in two steps. First, the pre
ceding equation x� + Am_ 1 xm + Bm_ 1 = 0 can be used to eliminate the higher powers 
of Xm in the expression for Am and Bm , reducing them to the form ;,mxm��m . Then mXm m 
the numerator and denominator can be multiplied by a constant quantity to reduce the 
rational function to a linear one. 

For example, suppose we have the system of equations: 

x2 - 5x + 2 = 0 

2 (x3 + 3x + 1 ) ( 1 ) 
y + y +  = 0  

2x - 1 x2 + 7x + 5 

From the first equation we have x2 = 5x - 2. Hence x3 = 5x2 - 2x = 23x - 10. Thus 
the second equation can be reduced to : 

2 ( 26x - 9) ( 1 ) 
y + 

2x - 1 
y + 

12x + 3 
= 0 

How can we eliminate the rational functions? Consider the first rational function. Sup
pose we multiply numerator and denominator by some constant C so that 

C(26x - 9) = (2x - 1 ) (ax + {3) 

for some values of a, {3 ;  then the common factor of 2x - 1 can be removed and the 
rational expression simplified to a linear one. Expanding gives us: 

26Cx - 9C = 2ax2 + (2{3 - a)x - {3 

We can make use of the substitution x2 = 5x - 2 to eliminate the square term: 

26Cx - 9C = (2{3 + 9a)x - ({3 + 4a ) 

Comparing coefficients gives us a system of 2 linear equations in 3 unknowns : 

26C = 2{3 + 9a 9C = {3 + 4a 

Because this system is underdetermined, we may express two of the variables in terms 
of the third. For example, one solution is a = 2, {3 = -23 I 4, and C = 1 1  4; in other 
words i (26x - 9) = (2x - 1 ) (2x - ¥ ) . Thus : 
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26x - 9 = I 26x - 9 = (2x - 1 ) (2x - 23/4) = Sx _ 23 
2x - 1 � 2x - 1 � (2x - 1 )  

3 5  

In this way the final equation x� + An- I Xn + Bn- l = 0 can be converted into an equa
tion where the coefficients An- I  and Bn- l are linear functions of Xn- 1 · 

Next, consider that Xn- l is one of the solutions to a quadratic equation. If we allow 
Xn- l to take on its two possible values, we obtain two different expressions for An- I 
and Bn-h and consequently two different equations quadratic in Xn . Multiplying these 
two equations together will give us a fourth degree equation in Xn whose coefficients 
are functions of the given quantities and the variables x 1 , x2 , • • •  , Xn_2 • As before we 
can reduce these coefficients to linear functions of Xn_2 ; letting Xn-2 take on its two 
possible values and multiplying the corresponding expressions will give us an eighth 
degree equation in Xn whose coefficients can be reduced to linear functions of Xn_3 • 
Eventually we will end with an equation in Xn of degree 2n whose coefficients are 
rational functions of the given quantities. This leads us to a preliminary theorem: 

THEOREM . Any Wantzel system ofn equations corresponds to an equation of de
gree 2n whose coefficients are rational functions of the given quantities; consequently, 
any constructible number is a root of an equation of degree 2n whose coefficients are 
rational functions of the given quantities. 

For example, the Wantzel system corresponding to the construction of the pentagon 
was : 

y2 + y - 1 = 0 

z2 - yz + 1 = 0 

Let the two roots of the first equation be y = a and y = b. In the above we found these 
two roots, and used them to form a quadratic equation in z to find the principal fifth 
root of unity. 

On the other hand, we can also write a single expression (which we will call the 
Wantzel polynomial) which contains all the roots. In this case, we can substitute the 
two roots y = a and y = b in to the left hand side of the second equation, then multiply 
the two expressions to obtain: 

(z2 - az + 1 ) (z2 - bz + 1) = z4 - (a + b)z3 + (2 + ab)z2 - (a + b)z + 1 

Since a and b are the two roots of y2 + y - 1 ,  we have a + b = - 1  and ab = - 1 .  
Thus the equation 

contains all solutions to the Wantzel system. 
Next, suppose Xn = r is a root of the Wantzel polynomial corresponding to a 

Wantzel system of n equations ; further suppose that no Wantzel system of fewer than 
n equations exists with Xn = r as a root. Wantzel then proved that no variable xk could 
be expressed as a rational function of Xj , x2 , . • .  , Xk- l ; equivalently, the quadratic 
equations are irreducible. This is because if one of the equations can be factored, then 
the preceding equation can be eliminated and we would obtain two Wantzel system 
of n - 1 equations, which would contain all the roots of the original system (and in 
particular r could be found by a Wantzel system of n - 1 equations) . For example, 
consider the system: 
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x2 - 3x - 7  = 0 

l - (4x - 1 )y  + 8x = 0 

z2 - (4y)z + (4y2 - 1 )  = 0 

MATH EMATICS MAGAZI N E  

and let z = r be one of the roots . Note that the last equation factors, so we may write 
two separate Wantzel systems where the third equation differs, namely 

and 

x2 - 3x - 7  = 0 

y2 - (4x - 1 )y  + 8x = 0 
z - (2y + 1 )  = 0 

x2 - 3x - 7  = 0 
y2 - (4x - 1 )y  + 8x = 0 

z - (2y - 1 )  = 0 

where z can be expressed as a rational function of the preceding variables . 
Consider the first system. Let the roots y2 - (4x - 1)y + 8x = 0 be y = a  and 

y = b; letting y take on these two values in the third equation and multiplying the 
factors gives us the expression 

(z - (2a + 1 ) )  (z - (2b + 1 )  = z2 - (2a + 2a + 2)z + (4ab + 2a + 2b + 1 )  

But i f  the roots o f  y2 - (4x - 1 )y  + 8x = 0 are y = a  and y = b ,  then a +  b = 
4x - 1 ,  and ab = 8x ; hence the second and third equation can be combined to form 
the single equation z2 - 8xz + (40x - 1 )  = 0. Thus in place of the three equations, 
we have two equations: 

x2 - 3x - 7  = 0 
z2 - 8xz + (40x - 1 )  = 0 

The reader can verify that the second Wantzel system would have z2 - (8x - 4)z + 
(24x - 4) = 0 as its second equation. Thus in place a Wantzel system containing n 
equations, we would have two systems containing n - 1 equations, which between 
them contain all the roots z of the original system; hence z = r would be the root of 
a Wantzel system containing n - 1 equations, which contradicts our original assump
tion. 

Note that any solution Xn of the Wantzel polynomial f(x) is a solution of x� + 
An- I Xn + Bn- I = 0, where An- I , Bn- I are found by substituting some set of solutions 
{x 1 , x2 , . . .  , Xn-d  to the equations of the Wantzel system. For example, the primitive 
fifth root of unity z = cos 2; + i sin 2; of z4 + z3 + z2 + z + 1 = 0 corresponds to a 
root of z2 - yz + 1 = 0 where y is a solution to y2 + y - 1 = 0. 

Wantzel used this idea to prove that if another polynomial F (x) had any root Xn = a 
in common with f(x) ,  then it must have all roots in common; hence f(x) is irre
ducible. Let Xn = a be the root corresponding to the set {x1 , x2 , • • •  , Xn-d,  and let 
F(x) be a polynomial with rational coefficients with F(a) = 0. As before we can 
reduce F (x) to an expression of the form A�_ 1 xn + B�_ 1 , where A�_ 1 , B�_ 1 are func
tions of the given quantities and the variables x1 , x2 , • • •  , Xn- I · Moreover, A�_1 and 
B�_ 1 must be equal to zero (since if they were not, Xn could be expressed as a rational 
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function of x 1 ,  x2 , • • •  , Xn_ 1 ) ;  hence we have A�_ 1 = 0 (and likewise, B�_ 1 = 0). But 
A�_ 1 can be reduced as before to a linear function of x�_ 1 • Thus the equation A�_ 1 = 0 
gives us an equation of the form A�_2xn- I + B�_2 = 0, where A�_2 and B�_2 are func
tions of the given quantities and the variables x 1 , x2 , . . .  , Xn_2 • 

As before A�_2 and B�_2 must be both equal to zero; from A�_2 = 0 we can ob
tain an equation of the form A�_3Xn-2 + B�_3 = 0. Continuing in this fashion we will 
eventually arrive at an equation of the form A'x1 + B' = 0, where A' and B' are func
tions of the given quantities only. Again, x1 cannot be a rational function of the given 
quantities only, so A' and B' must both equal zero; since they contain no variables, they 
are identically zero. Thus the two roots of x� + Ax1 + B = 0 satisfy A'x1 + B' = 0. 

Now consider the equation A;x2 + B; = 0. A'1 and B; have both been reduced 
to linear functions of x1 that will equal zero for any value of x1 that satisfies x� + 
Ax1 + B = 0. Thus the two possible values of x 1  will make both A; and B; equal 
to zero; consequently the four possible values of x2 will make A;x2 + B; = 0. In a 
like manner, the eight possible values of x� + A2x3 + B1 = 0 will satisfy the equation 
A�x3 + B� = 0, and so on, and so the 2n possible roots of x; + An- ! Xn + Bn- l = 0 
will satisfy F(x ) .  Hence if F(x) shares any root with f (x) ,  it will share all the roots 
of f(x) .  

For example, consider our system 

y2 + y - 1 = 0 

z2 - yz + 1 = 0 

which corresponded to the single equation z4 + z3 + z2 + z + 1 = 0. Let z = z 1  be the 
root corresponding to one of the roots y = y1 of the first equation, and suppose there 
was another polynomial F(z) with rational coefficients that also had z = z 1  as a root. 

First, we can eliminate the higher powers of z in F (z) by the equation z2 - y z + 1 = 
0. This allows us to write F(z) as a polynomial in y and z of the form 

where A 1  and B1 are functions of y and f(y ,  z) is some polynomial in y and z . Since 
z = z1 satisfies (by assumption) the equation z2 - yz + 1 = 0 when y = y" then sub
stituting in these values gives us A 1 z 1 + B 1 ,  which (since z 1 is a root of F) must equal 
zero. Since the system is minimal, z cannot be expressed as a rational function of y ,  
so A 1 and B 1 must both equal zero when y = y1 • 

Next take (for example) the expression A I . which we can write as 

(y2 + y - l )g (y) + A'y + B' , 

where A', B' are rational functions of the given quantities only. Since y = y1 satisfies 
y2 + y - 1 = 0, and (by the above) satisfies A 1  = 0, then A'y1 + B' = 0. But y1 (by 
assumption) cannot be written as a rational function of the given quantities; hence 
A' and B' are simultaneously equal to zero. Since they contain no variable terms at 
all, then A' and B' must be identically zero and A 1  = (y2 + y - 1 )g (y ) .  Hence any 
solution to y2 + y - 1 = 0 will make A 1  = 0. The same reasoning applies to B1 • 

Since F (z) can be written as (z2 - yz + l )f (y ,  z) + A 1 z + B1 , and A 1  = 0, 
B1 = 0 when y is equal to either root of y2 - y + 1 = 0, then any of the four roots 
of z4 + z3 + z2 + z + 1 = 0 will satisfy F(z) = 0. Hence F(z) must contain all the 
roots . 

At last this gives us a necessary condition for constructibility : 
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WA NTZEL ' s THEOREM . If r is a constructible number, i t  must be  the root of an 
irreducible polynomial of degree 2n . 

Equivalently, let r be the root of an irreducible polynomial f (x) . If the degree 
of f is not equal to 2n , then r is not constructible. This proves the impossibility of 
duplicating the cube or trisecting an arbitrary angle. In the first case, � is the root 
of x3 - 2 = 0, which is irreducible but not of degree 2n ; the same reasoning proves 
that arbitrary nth roots cannot be found, unless n is a power of 2. Likewise trisecting 
an arbitrary angle requires finding a root of l = 3x - 4x3 , which will in general be 
irreducible and not of degree 2n . 

What about the cyclotomy problem? If n is prime, the corresponding cyclotomic 
equation is irreducible, but if n is not a Fermat prime, then the degree of this equation 
is not a power of 2 and so the regular n -gon will not be constructible. Thus it is im
possible to construct regular polygons of 7, 1 1 , 1 3 ,  etc . sides using only compass and 
straightedge. 

Wantzel ' s Theorem alone is insufficient to prove the impossibility of squaring the 
circle, though it does lay the groundwork for a proof. If -JT( is a constructible number, 
it must be the root of an irreducible equation of degree 2n . In 1 882 Ferdinand Linde
mann (1 852-1 939) proved that n is transcendental : hence no equation of any degree 
with rational coefficients can have n as a root. Consequently squaring the circle is 
impossible. 
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Given a real polynomial with all its roots real, the Polynomial Root Dragging Theorem 
[1] ,  [2] states that if one or more roots of the polynomial are moved to the right, then 
all of the critical numbers also move to the right (or possibly stay fixed, if a root is 
repeated) with none of the critical numbers moving as much as the root that is moved 
most. But what happens if some of the roots of the polynomial are dragged in opposing 
directions, either toward or away from each other? 

Anderson's  proof of the Root Dragging Theorem in [2] can be modified to show 
that for odd and even polynomials ,  if we drag some subset of the positive roots toward 
the origin, and simultaneously drag the corresponding negative roots toward the origin 
so that the updated polynomial remains odd or even, then all of the function's  critical 
numbers move toward the origin (or stay fixed) . For a polynomial that is not necessarily 
odd or even, the situation is more complicated. As shown in the example in Figure 1 ,  
it appears that when two consecutive roots are dragged toward each other (as indicated 
by the arrows), the critical numbers to the left of the first root move right, while the 
critical numbers to the right of the second root move left. In particular, for the critical 
numbers c; of the original polynomial p and the critical numbers d; of the updated 
polynomial q ,  we have that c1 < d1 and c2 < d2 , while c4 > d4 . It turns out that our 
observations in this example hold in general . In what follows we prove the Polynomial 
Root Squeezing Theorem, which shows that dragging certain pairs of roots toward 

y 

X 

Figure 1 Two roots of the polyno m i a l  p have been squeezed toward each other  to create 
the polynom i a l  q. 
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one another i n  a uniform way causes the outer critical points of the function to move 
toward each other (or stay fixed, if a relevant root is repeated) . 

The span of a polynomial with all real zeros is the difference between its greatest 
and least roots. The Root Squeezing Theorem also provides insight into how the re
spective spans of a polynomial' s  derivatives depend on the location of the function's 
interior roots . We present an elementary argument for the fact [ 4] that for any de
gree n polynomial p with all real zeros and span 2b, Span p<k) � Span q <k) , where 
q (x)  = xn-2 (x2 - b2) .  Moreover, q is the unique monic polynomial with roots at ±b 
for which this minimum is attained. 

For notational simplicity, we let Pn,b denote the set of all monic, degree n poly
nomials with all real roots r1 � r2 � · · · � rn such that r1 = -b and rn = b, where 
b > 0. By translations and scalings,  results that hold for polynomials in Pn, b can be 
restated to apply for any polynomial whose zeros are all real . The critical numbers of 
a function p E Pn,b will be denoted by c1 � c2 � • • • � Cn- t .  and we call r; an interior 
root of p if i =F 1 and i =F n .  

The root squeezing theorem 

G. Peyser proved several results [6] that are very similar to the Polynomial Root Drag
ging Theorem. For example, removing the rightmost zero of a polynomial with all real 
zeros shifts the critical points of the resulting polynomial to the right. In addition, drag
ging the leftmost root of a polynomial to the right shifts the rightmost critical number 
to the right in the updated function. Our proof of the Root Squeezing Theorem uses 
analysis similar to Peyser's to demonstrate the impact of dragging two roots toward 
each other on certain critical points . 

THEOREM 1 .  (THE POLYNOMIAL ROOT S QUEEZING THEOREM) Let p E Pn ,b 
and say that p has critical numbers c 1  � · · · � Cn- l · Let rj < rk be any two interior 
roots of p and d E JR+ be such that 

d � min { rHt - rj , rk - rk- ! •  � (rk - rj ) } . 

Let p be the polynomial that results from squeezing rj and rk together by a distance 
2d. That is, 

p (x) = (x - rj - d) (x - rk + d) n (x - r; ) 
il) ,k 

Denote the critical points of p by c1 � c2 � • . .  � cn- t · Then for 1 � i < j we have 
c; � c; , and for k  � i � n - 1 we have C; � c; . 

Proof Let p E Pn,b and choose interior roots rj and rk so that rj < rk . Let c; be a 
critical number of p such that 1 � i < j or k � i � n - 1 .  We begin by considering 
the case where c; lies at a repeated root of p (x) .  If r; = c; = r;+ t and neither r; nor ri+ 1 
are being shifted, then we have c; = r; = ri+ 1  = c; . This is the only situation where 
c; does not move in response to a pair of roots being squeezed. If r; = c; = r;+ t  and 
we shift r;+ t  to the right, then by Rolle's  Theorem C; > r; = c; as desired. Likewise, 
shifting r; to the left shows c; < ri+ t = c; . 

Therefore, the only remaining case is where r; < c; < ri+ ! · Our goal is to compare 
c; and c; ; to do so, we investigate the behavior of p' at c; and c; . Define the function 
q (x)  so that p(x) = (x - rj ) (x - rk)q (x ) .  Differentiating this expression gives 

p' (x )  = (x - rj + x - rk)q (x) + (x - rj ) (x - rk )q ' (x ) .  ( 1 )  
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Similarly, w e  can differentiate p (x) = (x - rj - d) (x - rk + d)q (x )  to obtain 

jj' (x) = (x - rj + x - rk)q (x)  + (x - rj - d) (x - rk + d)q ' (x) .  (2) 

Subtracting ( 1 )  from (2), simplifying, and evaluating the resulting expression at x = c; 
gives 

jj' (c; ) = d(rk - rj - d)q ' (c; ) .  (3) 

Since we assume that (rk - rj ) � 2d > d > 0, the expression d(rk - rj - d) must be 
positive. Therefore, (3) implies that jj' (c; ) and q ' (c; ) must have the same sign. 

Now consider the case of a critical number that lies to the left of the two roots that 
were squeezed together. In particular, 1 :::; i < j ,  so c; < r j .  We examine the behavior 
of p and p on the interval r; < x < r;+ 1 • Obviously p (x) is strictly positive or strictly 
negative on r; < x < r;+ 1 •  We will assume p (x) < 0 in what follows ;  the argument is 
similar if p (x) > 0. 

Having assumed that p (x) < 0 over the interval r; < x < ri+ t .  we note specifi
cally that p (c; ) < 0. Since p (c; ) = (c; - rj ) (c; - rk)q (c; ) ,  we can also conclude that 
q (c; ) < 0. Using the fact that p'(c; ) = 0, a careful analysis of the signs of terms in ( 1 )  
evaluated at x = c; reveals that q' (c; ) < 0 .  Since (3) implies that jj' (c; ) and q' (c; ) have 
the same sign, we have jj' (c; ) < 0. 

Again using the assumption that p (c; ) < 0, a sign analysis of terms in the equation 

p (x ) (x - rj - d) (x - rk + d) = p (x) (x - rj ) (x - rk) 

evaluated at c; implies that jj (c; ) < 0. Letting r; denote the i th root of the updated 
polynomial jj, we note that r; < C; < ri+ 1 and r; = r; < X  < ri+ 1 :::; Ti+ t .  so the fact 
that jj(c; ) < 0 implies that p (x) < 0 on the entire interval (r; , r;+ 1 ) .  Therefore, the 
sign of p' (x) must change once from negative to positive on this interval with the 
change occurring at the critical point c; . Since we established earlier that jj' (c; ) < 0, 
it follows that c; < c; , as desired. 

A similar argument shows that c; :::; c; when k :::; i :::; n - 1 .  • 

The Root Squeezing Theorem tells us that when we squeeze two interior roots to
ward each other, unless r1 = r2 = r2 or rn = rn_ 1 = rn- t .  the extreme left critical point 
c1 lies to the right of the critical number c1 in the original polynomial, and the extreme 
right critical point cn_ 1 lies to the left of cn_ 1 • This will be important when we next 
consider the spans of a polynomial ' s  derivatives. In addition, the Root Squeezing The
orem provides a measure of certain critical points ' sensitivity to the particular root(s) 
being moved. For example, if we shift root rj to the right d units (assuming d meets 
the conditions stated in Theorem 1 ) ,  the Root Dragging Theorem tells us that all crit
ical numbers in the updated function move to the right, with each moving less than d 
units . If we now choose some rk > rj and move rk to the left d units, the Root Drag
ging Theorem again implies that all of the critical numbers in the updated function 
have moved to the left. If instead of doing two sequential moves we apply the Root 
Squeezing Theorem and perform the two shifts simultaneously, we see that the critical 
numbers to the left of r j have moved right, while the critical numbers to the right of rk 
have moved left. This indicates that root rj has more "pull" with respect to the critical 
numbers to its left than does the root rk o and vice versa. 

The span of a polynomial  

The span of  a polynomial with all real zeros is the difference between its least and 
greatest roots . In [7] R. Robinson proved that among all p E P n , 1 ,  the function whose 
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derivatives each have the maximum span must have form (x + 1 )k (x - 1 t-k . Robin
son's  natural conjecture, that the maximum span of all the derivatives is achieved by 
the function(s) for which k and n - k are closest to each other (equal when n is even, 
differing by 1 when n is odd) , has been resolved in some cases, but remains an open 
question. Meir and Sharma [3] have proved several results on the maximum spans of a 
polynomial 's derivatives for the situation where restrictions are placed on the first and 
second moments of the zeros. R. Pereira [5] has recently achieved some of these same 
results as a consequence of a more general theorem through a novel approach using 
the theory of majorizations .  

Several authors [ 4, 5, 8] have independently proved the result that for any degree n 
polynomial p with all real zeros, 

� 
V ----;:- Span p :::: Span p' .  

Applying this inequality to consecutive derivatives of p reveals that 

Span p (k) 2: 
(n - k) (n - k - 1 )  
------- Span p .  

n (n - 1 )  

(4) 

(5) 

Meir and Sharma [ 4] further note that this minimum is attained by the function q (x) = 
xn-2 (x2 - b2) for polynomials in Pn .b · 

We now use the Root Squeezing Theorem to show the natural way this function q 
arises and that it is the unique element in Pn,b whose derivatives have the minimum 
possible span. Finally, we show that a consequence of this approach is the inequal
ity (5) . 

Two short lemmas 

Two natural functions arise in the course of squeezing roots of a polynomial together. 
If we consider a given p E P n ,b and imagine progressively squeezing all of its interior 
roots to a point r E [ -b, b] ,  we arrive at a function p (x) of the form 

p (x) = (x - rt-2 (x2 - b2) .  

Differentiating p(x ) , we quickly see that the first and last zeros of p' lie at 

2r ± j4r2 + 4nb2 (n - 2) X = ----�-------------

2n 
from which it follows that 

, J 4r2 + 4nb2 (n - 2) 
Span p (x) = . 

n 
(6) 

Since h and n are fixed, we observe that Span p' (x) is (uniquely) minimized when 
r = 0. We state this formally as Lemma 1 :  

LEMMA 1 .  Let p (x)  be a polynomial of form p(x) = (x - r)n-2 (x2 - b2) where 
b > 0 and -b :::;: r :::;: b. Then the absolute minimum span of p' (x ) occurs only when 
r = 0. 

From Lemma 1 we see that the function p (x) = xn-2 (x2 - b2) is of further impor

tance. For this function, it follows from (6) that Span p' (x) = 2b�, so that the 
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span of the derivative of p is an increasing function of b. Formally, this is our second 
lemma: 

LEMMA 2 .  If p (x) = xn-2 (x2 - b2), then Span p' (x)  is directly proportional to b. 

From root squeezing to minimum span 

We now use the Root Squeezing Theorem to provide an alternate proof that q (x ) = 
xn-2 (x2 - b2) is the unique polynomial whose derivatives have minimum span. We 
begin by showing this for the first derivative and then use induction to proceed to 
higher order derivatives .  

THEOREM 2 .  Let q (x)  = xn-2 (x2 - b2) for some b > 0 and let p (x)  :(= q (x )  be 
any element ofPn ,b · Then Span q ' (x)  < Span p' (x) .  

Proof Let p (x) = fT=i (x - r; ) with -b = ri ::::: r2 ::::: . . .  ::::: rn- i ::::: rn = b and let 
a be the mean of the interior roots {r2 , r3 , • • •  , rn-d · Let j be the greatest integer such 
that rj < a, let k be the smallest integer such that rk > a, and let d be the minimum 
of a - rj and rk - a . Shift the root rj to the right d units and rk to the left d units , 
and call the resulting polynomial Pi (x) .  This process shifts rj or rk to x = a . From the 
Root Squeezing Theorem we know that Span p; (x) ::::: Span p' (x ) .  Note further that 
the mean of the interior roots of Pi (x) remains at x = a .  

B y  repeated application of this process on the resulting polynomial Pi (x) w e  obtain 
the polynomial p (x) = (x - a)n-2 (x2 - b2) .  Theorem 1 implies that Span p' (x)  ::::: 
Span p' (x ) ;  moreover, the discussion following the proof of Theorem 1 shows that 
equality holds if and only if p (x) = p (x) .  Lemma 1 implies Span q' (x) ::::: Span jj' (x) ,  
with equality if and only if a = 0 .  Therefore, it follows Span q ' (x)  ::::: Span p' (x ) ,  
with equality only when p (x) has all of its interior roots at x = a  = 0 ,  i n  which case 
p (x) = q (x ) .  • 

Note particularly that the above argument shows that q is the unique minimizer 
among polynomials in Pn ,b · Next we show that q (x)  is in fact the unique polynomial 
whose higher order derivatives also have the least possible span. 

THEOREM 3 .  Let q (x)  = xn-2 (x2 - b2) and let p (x)  E Pn,b be such that p (x)  :(= 
q (x) .  Then Span qU) (x) < Span p<j) (x) for all 1 ::::: j ::::: n - 2. 

Proof We will prove Theorem 3 by induction on the order of the derivative. By 
Theorem 2, Span p' (x) < Span q' (x ) ,  so the base case is true. Our inductive hypothesis 
is that Span q <k) (x) < Span p<k) (x) where 1 ::::: k ::::: n - 3. We want to show Span 
q <k+ l ) (x) < Span p<k+ i ) (x) .  

We begin by noting that it i s  straightforward to show 

q <k) (x) = ak (x2 - e�)xn-2-k 

for some real constants ek > 0 and ak > 0. Next we let p<k) (x) = tk (x - ri ) · · · 
(x - rn-k) where ri ::::: · · · ::::: rn-k and tk > 0 is a real constant, and perform a series 
of manipulations on the roots of p<k) (x) .  The constants ak and tk do not affect the 
position of the roots of the polynomials q <k) or p<k) , so without loss of generality 
we set ak = tk = 1 .  Next we translate each root of p<k) (x) by q+;n-k which creates 

the new polynomial Pi (x) = (x + 'n-;-q )  · · · (x - 'n-;-q )  of degree n - k .  Let-

ting p2 (x) = (x2 - ( 'n-;-q ) 2) xn-k-2 , Theorem 2 implies that Span p; (x) ::::: Span 

p; (x) .  It then follows that 
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Span P2 (x) = Span p1 (x)  = Span p<kl (x ) ,  and 

Span p; (x) :::: Span p; (x) = Span p<k+ t l (x) .  

From the definitions of q and p2 , (7), and the inductive hypothesis, we know 

2ek = Span q <kl (x) < Span P2 (x) = rn-k - r1 . 

(7) 
(8) 

Then from Lemma 2, we know Span q <k+ l l (x) < Span p� (x ) .  By (8) it follows that 
Span q <k+0 (x)  < Span p<k+ l J (x) .  • 

Having established that q is the unique function in Pn.h whose derivatives have 
minimum span, by finding the roots of qUl (x) we can derive the lower bound on the 
span of the j th derivative of any polynomial. For 2 :::: j :::: n - 2 the jth derivative of 
q (x) is 

qUl (x ) = 2 
(n - 2) ! (jn -

j (j + 1 ) ) xn-j + 
(n - 2) ! 

(x2 - l )xn-j-2 .  
(n - j) !  2 (n - j - 2) !  

Setting qU> (x) = 0 and solving this equation for x gives the roots of qUl (x) and leads 
to the following corollary, which is inequality (5) .  

COROLLARY. If p(x) E Pn.b· then Span pU> (x) ::0:: 2b (n-���n-��- l) where 1 :::: j < 

n - 2. 
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Have you experienced a "mathematical yawp" lately? (Not sure you want to answer 
until you know what one is?) Well, the phrase "mathematical yawp" was coined by 
Francis Su in his James R. Leitzel Lecture at the 2006 MathFest. In essence, a math
ematical yawp is one of those "light bulb" or "aha ! "  moments when a mathematician 
comes to an understanding of a topic so moving that it is accompanied by a yelp of joy 
or disbelief. By specialization, a combinatorial yawp is one of those moments achieved 
while counting. 

Combinatorial proofs are appreciated for the elegance and/or simplicity of their 
arguments (see [2]) .  However, the true (and frequently underappreciated) beauty lies 
in their power to generalize results . Understanding the components of a mathematical 
identity in a concrete counting context provides the first clue for exploring natural 
extensions. Investigating and stretching the role of each parameter in turn, leads to 
different generalizations--ones that might not be connected without the combinatorial 
insight. 

Our yawp occurred while exploring Problem #1 1 220, proposed by David Beckwith, 
from the April 2006 issue of the American Mathematical Monthly [1 ] ,  the innocuous
looking alternating binomial identity below. 

IDENTITY 1 .  For n :::':: 1 ,  

�
(- 1 )

' (n) (2n - 2r) = O. L r n - 1  r=D 

Equipped with the ability to select subsets, to paint elements black, blue, or white, and 
to count, we will work through a novel proof of this  identity and then explore numerous 

45 
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related results . What qualifies as a natural generalization i s  open to debate, but the 
greatest surprise is the sheer number of interesting generalizations to be explored. 

To prove Identity 1 , begin by understanding the unsigned quantity in the alter
nating sum, t) e:::::;r) . Consider the set of n consecutive pairs , { { 1 , 2} , { 3 , 4} ,  . . .  , 
{2n - l ,  2n } } . Given r , 0 ::; r ::; n , select r of the pairs to paint black in C) ways. Of 
the remaining 2n - 2r elements that have not yet been painted, select n - 1 to paint 
blue. This can be done in e:::::;r) ways. The remaining elements are then painted white. 
We cal l such a painted set a configuration. For example, when n = 5 , 

X =  { { 1 , �} ,  {J., 1} ,  {5 ,  6} , {1, 8 } ,  {9, 10} }  

i s  a configuration where black elements are bold, blue elements are underlined, and 
the remaining elements are white. 

Now define two sets, denoted £ and 0, that depend on the parameter r, the number 
of black pairs . 

Set £. All configurations with an even number of black pairs . 

Set 0. All configurations with an odd number of black pairs . 

Since a configuration from £ contributes + 1 to the summation while a configuration 
from 0 contributes - 1 , the left-hand side of ldentity 1 is simply ! Set £ 1 - ! Set 0 1 .  If 
we can show that I Set £ I  = I Set 0 I ,  then Identity 1 is proved. Our goal then is to find 
a bijection between £ and 0 .  

Correspondence. Find the minimum integer j such that 1 ::; j ::; n and {2j -
1 , 2j } contains no blue element, i .e . ,  it is either a black pair or a white pair. Then 
toggle the color of this pair-if it is black, make it white and if it is white, make 
it black. 

Since there are only n - 1 blue elements (and n total pairs), every configura
tion has at least one pair containing no blue element. So j always exists and the 
correspondence is a bijection. Hence, ! Set £ 1  = ! Set 0 1  and the proof is com
plete. 

As an illustration, the previously considered configuration 

X =  { { 1 , �} ,  {J., 1} ,  {5 ,  6} , {1, 8 } ,  {9 , 10} } ,  

belongs to £ since it contains r = 2 black pairs . B y  toggling the first blueless pair 
{5 , 6 } ,  X is matched with 

X' = { { 1 , �} ,  {J., 1} ,  {5 , 6 } ,  {1, 8 } ,  {9 , 10} } ,  

which belongs to 0 ,  since i t  has r = 1 black pair. 
At this point, many natural questions arise. Can we change the number of blue ele

ments? What happens if we replace the pairs above by k-sets? Can we say something 
about partial sums? We will consider each of these questions in tum. 

Changing the number of blue elements. If we paint fewer than n - 1 elements blue 
in our proof above, the argument doesn't  change. We are still guaranteed a blueless 
pair, so a toggle point exists . Letting m represent the number of blue elements to be 
painted, this gives 
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IDENTITY 2 . For 0 _:::: m < n, 

What happens when m is larger than n - 1 ?  Well, the initial set-up is the same. Select 
r pairs to color black and m of the remaining elements to color blue. The sets & and 
0 contain configurations with an even or odd number of black pairs . Again, toggle the 
color of the first blueless pair. Unfortunately, there are now unpaired configurations in 
our correspondence (so it is no longer a bijection). Since m is greater than or equal to n ,  
we can no longer guarantee a toggle point exists. However, w e  know that the unpaired 
configurations have at least one blue element in every pair, so these configurations 
have zero black pairs and hence belong to & . 

For example, when n = 5 and m = 7, the configuration X = { {1, 2} ,  {J, 1J , {�, §} ,  {1, 8 } ,  {9 , 1 0} }  

has no toggle point. 
How many of these unpaired configurations are there? Such configurations have 

m - n pairs where both elements are painted blue. So there are (m�n) ways to select 
the blue pairs . Then, the other n - (m - n) = 2n - m pairs have one blue element and 
one white element, and there are 22n-m 

ways to paint them. Thus, there are (m�n) 22n-m 
unpaired configurations, leading to our next generalization. 

IDENTITY 3 .  For n , m � 0, 

Note that this is a generalization of Identity 2 since (m�n) = 0 when m < n .  To some, 
this would be enough for a yawp. But we press on for more ! 

From pairs to k-sets. Rather than creating n subsets by pairing consecutive elements 
of the set { 1 , 2 , 3, . . .  , 2n } ,  we ask what would happen if we group k consecutive 
elements from { 1 , 2, 3, . . .  , kn } . By mimicking the argument for Identity 1 , we can 
immediately generalize Identity 2 as follows. 

IDENTITY 4 .  For 0 _:::: m < n and k � 1 , 

For example, when n = 5, k = 3 ,  m = 4, the configuration X = { {1, 2 , �} ,  {4, 5 , 6} ,  {7 , 8, 9} ,  { 1 0, ll. 12} ,  { 13, 14, 15 } }  

has r = 2 black 3-sets (and thus belongs to  &) and by toggling the first blueless 3-set, 
we get X' = { {1, 2 , �} ,  {4, 5 , 6 } ,  {7 , 8, 9} ,  { 1 0, ll, 1 2} ,  { 13 ,  14, 15} } 

(which belongs to 0). 
Can we generalize Identity 4, allowing m � n blue elements? Yes and no. We can 

formulate a general answer, but the alternating sum becomes a sum over integer parti
tions. Although it is not the nice answer we were hoping for, it still has some notable 
specializations. 
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I n  the general situation with m 2: n ,  unpaired objects are configurations with at least 
one blue element in every k-set. These objects necessarily belong to E since they have 
r = 0 black k-sets . For example, when n = 5 ,  k = 3 ,  m = 8, the configuration 

{ {!, 2, 3 } ,  {1. �. §} ,  {1, 8, 9} , {10, 1 1 , 1 2 } ,  { 1 3 ,  1 4 , 1 5 } }  

has no blueless 3-set. We can count these b y  considering the distribution of m blue 
elements among the n different k-sets . Let x; count the number of k-sets containing i 
blue elements ( 1  :::: i :::: k) . In our example, x 1  = 3, x2 = 1 ,  x3 = 1 .  The sum L::7= t x; 
counts the number of k-sets containing blue elements while the sum L::7= t ix; counts 
the number of blue elements . Only nonnegative integer solutions (x 1 , x2 , . • •  , Xn ) to 

{ n = X t  + Xz + · · · + Xk 
m = Xt + 2xz + · · · + kxk 

contribute to the number of unpaired configurations. Since the number of ways to 
choose which x; k-sets have i blue elements is the multinomial coefficient 

and a k-set with i blue elements can be painted e) ways, we get 

ID ENTITY 5 .  For all k, m ,  n 2: 1 , 

where the sum on the right is taken over all simultaneous nonnegative integer solutions 
to n = Xt + Xz + · · · + Xk and m = Xt + 2x2 · • · + kxk . 

Note that this is a generalization of Identity 4 since when m is less than n ,  the sum on 
the right is empty. Some special cases are worth mentioning because their right-hand 
sides reduce to simple one-term expressions:  

• m = n + l  

Partial sums. The final generalization considers what happens if we return to creat
ing pairs from the set { 1 ,  2, 3 ,  . . .  , 2n } and only consider the first s terms of the original 
sum. To make life easier, we restrict our attention to the situation where m < n and 
consider 

In this case, the development parallels Identity 2 except that only configurations with s 
or fewer black pairs are considered. To match configurations between E and 0, we tog-
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gle the color of the first blueless pair unless the configuration contains the maximum 
s black pairs and a white pair precedes them. 

For example, when n = 5, m = 2, s = 3 the configuration X = { { 1 ,  2 } ,  {3 , 4} ,  {5 , 6 } ,  {1, �} , {9 , 10} } ,  

i s  unmatched, since by toggling the first blueless set { 1 ,  2} ,  we would wind up with 
four black pairs, exceeding our upper bound. We note that among the configurations 
with s black pairs and w white pairs, the fraction of those where a white pair comes 
before every black pair is 

w�s • 

To count the number of unmatched objects, let b represent the number of blue 
pairs in a configuration. Since b blue pairs contain 2b blue elements, there must be 
m - 2b pairs containing one blue and one white element (and since we have s black 
pairs, there are n - b - (m - 2b) - s = n - m - s + b white pairs) .  So there are 
2m-2b C. b , m-2b� n-m-s+b) configurations with s black pairs, b blue pairs, and a total of 

m blue elements . Of these, n��,;;�j;b of the configurations have a white pair coming be
fore all the black pairs . These unmatched configurations all belong to £ or all belong 
to 0 depending on the parity of s. This yields the following identity : 

IDENTITY 6 .  For O  :'S m < n and O :'S s :'S n, 

= ( - 1 )' ""  n - m - s + b 2m-2b ( n 
) . � n - m + b s ,  b ,  m - 2b , n - m - s + b 

Perhaps you don't  find this solution satisfactory? Let's make one last restriction in 
hopes of finding a "nice" solution. Restrict the location of the black pairs to only occur 
in the first s positions. Then, for 1 :::: m , n ,  the alternating sum becomes 

The unsigned quantity in the alternating sum, (;) (2n,;;2r) , counts the ways to select 
r black pairs from { { 1 ,  2 } ,  {3 ,  4} , . . .  , {2s - 1 ,  2s } }  and then paint m of the remain
ing uncolored elements from { 1 ,  2, 3 ,  . . .  , 2n } blue. We then use the same toggling 
argument as before: 

Set £. All configurations with an even number of black pairs . 

Set 0. All configurations with an odd number of black pairs . 

Correspondence. Find the minimum integer j such that 1 :::: j :::: s and {2j - 1 ,  
2j } contains no blue element, i .e . ,  it is either a black pair or a white pair. Then 
toggle the color of the pair. 

The solutions to this alternating sum depends on the size of m,  the number of blue 
elements to be painted. If m < s, a toggle point always exists and our correspondence 
is a bijection, giving the following generalization of Identity 2. 

IDENTITY 7 . For O :'S m < s :'S n, 
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If m = s ,  the unmatched configurations are those in which each of the first s pairs 
contains at least one blue element. (Unlike the previous situation, we don't  have to 
worry about generating too many black pairs .)  All 2s of these unmatched configura
tions belong to £, and we get 

IDENTITY 8 .  For 0 ::S s ::S n, 

Lastly, if m > s, the unmatched configurations are again those in which each of the 
first s pairs contains at least one blue element. We convert the alternating sum into a 
positive sum by counting the configurations that are unmatched by the previous cor
respondence. Such unmatched configurations have at least one blue element among 
each of the first s pairs (and therefore have zero black elements). For 0 :::;: w :::;: s ,  
w e  claim that there are (�) cn.:��w) unmatched configurations where w of the first 
s pairs begin with a white element. To see this ,  note that once we choose which s 
pairs begin with a white element (which can be done (�) ways) then those w pairs 
must end with a blue element and the remaining s - w pairs must begin with a blue 
element. The remaining m - s blue elements can be chosen among the unspecified 
(s - w) + (2n - 2s) = 2n - s - w elements in Cn,:��w) ways. Since all of the un
matched configurations belong to £, we arrive at our final identity, which actually 
encapsulates Identities 7 and 8 too. 

IDENTITY 9 .  For all m ,  n ,  s 2: 0, 

So starting from a single alternating binomial identity, a concrete counting context, 
and a good correspondence, eight related identities were explored by manipulating the 
roles of the parameters (and sometimes introducing new ones). The resulting identi
ties were often beautiful generalizations-though occasionally the results didn't  quite 
qualify as "simple" or "nice." Regardless, the questions were worth asking, the an
swers worth exploring, and the connections worth making. We yawped. Did you? 
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We have all had students who, after having made a disastrous misstep at the beginning 
of a calculation, continued to grind away, oblivious to how complicated and unreason
able their result was becoming. Rarely does such perseverance pay off as well as it did 
for the second semester calculus student who submitted the following solution on her 
final exam. 

f ( 2 3 4 
5 ) X X X X X X X X X xe dx = -e - -e + -e - -e  + · · · + C 2 3 !  4! 5 ! 

= -ex + X  ex + ex 1 - X  + - - - + - - · · · + C ( x2 x3 x4 ) 2 3 ! 4 ! 

At first the professor grading the final thought h e  could give little credit for this work 
since the student had reversed the usual choices for f and g in applying the (tabular) 
integration by parts formula, 

where g-(k) denotes the kth successive antiderivative and J<n) is  constant. 
However since the answer was correct he decided to give her work further consid

eration. Since J<k) was never constant, it was apparent that she had tacitly assumed the 
following series form for the solution. 

( 1 )  

In this calculation series ( 1 )  produced the correct solution, but was this a one-time 
shot-in-the-dark or could this method be used to find other valid series representations? 

Throughout the remainder of the article we will refer to series ( 1 )  as an i .p.  series, 
where i .p.  is an abbreviation for integration by parts . 

Let's first determine the i .p.  series for the sine and cosine functions and then com
pare them with their Maclaurin series . We will address the convergence of ( 1 )  at the 
end of the article. 

sin x = 1x 
cos t dt 

xz x3 x4 xs x6 
= X COS X + - sin X - - COS X - - sin X + - COS X + - sin X · · · 2 3 !  4 ! 5 ! 6 ! 

( x3 xs x 7 ) (x2 x4 x6 xs ) = cos x x - 3 1 + 5 1 - 7 1 · · · + sin x 2 - 41 + 61 - 8 1 · · · 
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( x3 xs x7 ) 
= COS X X -

3 !  
+ Sl -

7 !  
· · · 

- sin x 1 - - + - - -+ - · · · + sin x 
( x2 x4 x6 xs ) 

2 4! 6 !  8 !  
, 

hence if we let 

and 

we obtain 

as cos x - ac sin x = 0. 

On the other hand 

1 - COS X = 1x sin t dt 

x2 x3 x4 xs x6 
= X sin X - - COS X - - sin X + - COS X + - sin X - - COS X · · · 

2 3 !  4! 5 !  6 !  

(2) 

( x3 xs x 7 ) ( x2 x4 x6 xs ) 
= sin x X - 3! + Sl -

7 !  . · . + COS X - 2  + 4! 
-

6 !  
+ 8! · · · 

( x3 xs x7 ) 
= sin x x - 3! + 5! -

7 !  
. . .  

( x2 x4 x6 xs ) 
+ COS X 1 - - + - - - + - · · · - COS X 

2 4! 6 !  8 !  

Thus with as and ac as above, we have 

ac cos X + as sin x = 1. 

Solving the simultaneous equations (2) and (3) yields 

as = sin x and ac = COS X 

(3) 

and shows that this method does indeed obtain valid series representations for sin x 
and cos x, in fact their Maclaurin series . 

There are several ways to find an i .p. series for n. The first we present uses the fact 
that n is the area of the unit circle. Recall that (2k - 1 ) ! !  = (2k - 1)(2k - 3) . .  · 5 . 3 . 
I . Then 

n = 41 1
� dx 

= 41 1
v'I+x�dx 

= 4 [ - �v'!+x(�)3 

00 k <- ok+' (2k - 3) ! !  (- l)k+' 2k+' cv'I-=x)2k+3 J I ' +{; <- I ) 
2k cvT+x)2k-i · 

(2k + 3) ! !  o 
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00 C- IlcvT-=-:X)2k+3 J 1 1 + 2 8 (2k + 3) (2k + I ) (2k - IKvT+x)2k- 1 a 

8 
00 (- l )k+ l 

= 3 + 
8 8 (2k + 3) (2k + 1 ) (2k - 1 )  

00 (- l )k+ 1 
= 

8 
. {; (2k + 3) (2k + 1 ) (2k - 1 )

. 

Partial fractions decomposition can also be used to derive this series .  

53 

Les Reid, the author's  colleague at Missouri State University, derived the following 
elegant example of an i .p.  series for Tr via the arctan function. Consider J 1 d:z = 
arctan x and the partial fraction decomposition 

+ 
The i .p.  series method yields 

Therefore 

00 1 ( X )k - I: - -k=1 k x + a  

Tr = 4 arctan 1 

00 sin n:k = 4 L: -k -4 . k=1 2 z k  

In some situations the i .p.  series method can be used to sum a series .  Here we 
calculate 
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00 1 8 k(k + l ) (k + 2) · · · (k + n) 

for n 2: 1 .  This number will appear as a constant in the following equation. 

f xn 00 xn+k (n - 1 ) !  (- l )k+ 1 (k - 1 ) !  xn- 1 1n x dx = - 1n x + L (- l )k · k + C  n k= i  (n + k) !  x 

xn 00 (k - 1 ) ! = - ln x - xn (n - 1 ) !  L + C n k= i  (n + k) ! 

xn 00 1 = - ln x  - xn (n - 1 ) !  L + C. n k= i  k (k + l ) (k + 2 )  · · · ( k  + n) 

Differentiating both sides eliminates the constant of integration. 

xn- i 00 1 xn- ' ln x = xn- ' ln x + -- - nxn- ' <n - 1 ) ! I: . 
n k= i  k (k + l ) (k + 2 )  · · · ( k  + n) 

By simplifying this equation we obtain 
00 1 1 8 k (k + l ) (k + 2) · · · (k + n) 

= 
n !  n · 

This result can also be obtained by telescoping. 
Conditions for convergence of i.p. series are generally easily satisfied. By finitely 

many applications of integration by parts we obtain 

1h 
n- i 

l b 1b a 
J (t)g (t ) dt = t; (- l )k �- (k+l ) (t )g (k) (t) 

a
+ (- l )n- 1 

a 
�-(n)g(n) (t ) dt , 

(4) 

hence in order to determine convergence of the i .p. series, it suffices to show the right 
hand integral in (4) tends to zero. However 

l ib �-(n) g (n) (t )dt l � 1b I J-(n) g (n) (t ) l dt 

� (b - a) sup { l f- (n) (t )g(n) (t ) i : a < t < b} .  

Thus an i .p. series is convergent to the corresponding integral, provided 

sup{ l f- (n ) (t )g(n) (t ) l : a < t < b} ....-+ 0. (5) 

As an example we verify the convergence of the second i.p. series for rr presented 
above. Since 

1 1 dx 2 1 ' ( 1 1 ) rr = 4 arctan 1 = -- = -: --. - --. dx ,  o 1 + X2 I o X - I X + I 

it suffices to show i.p. convergence for J01 (x + a) -1 dx , where a = ±i. To that end, 
let f (x)  = 1 and g (x) = (x + a) -1 • 
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Let n b e  a nonnegative integer. Then on (0, 1 ] ,  a and xn are increasing func

tions,  hence their composition is increasing and we have 

sup { l f - (n ) (x)g(n ) (x) l : 0 < X < 1 }  

= sup { I xn n !  
I I : 0 < x < 1 } 

n !  (x + a)n+ 
= sup { ( r:-) n · � : 0 < x < 1 } v �  x2 + 1  

Thus by (5) above we see this i .p.  series indeed converges to JT .  
Since the convergence criteria for an i .p. series are so easily satisfied and because 

of the variety in their form, i.p. series have the potential for wide application. Due to 
the elementary nature of integration by parts and infinite series they offer new topics 
for the classroom and projects for advanced students . They give the working mathe
matician an elegant method for deriving series and the potential for discovering new 
ones. 

What Fract i o n  of a Soccer B a l l 
I s  Covered w i th Pentago n s ?  

P .  K .  A RAV I N D  
Phys ics Department 

Worcester Po lytec h n i c  I n st itute 
Worcester, MA 01609 

parav i nd®wpi .edu 

The surface of many soccer balls is covered with pentagons and hexagons in such 
a way that one pentagon and two hexagons meet at each vertex, there being twelve 
pentagons and twenty hexagons altogether (see Fig. 1 ) .  The pentagons are generally 
set off in a different color to give the ball some contrast and make it easier to see. While 
watching the World Cup soccer matches last summer, I found myself wondering what 
fraction of the surface of a soccer ball is covered with pentagons .  It is the purpose of 
this note to give the answer to this geometrical puzzle. 

A rough answer to the puzzle can be obtained using Euclidean geometry if one 
assumes that the pentagons and hexagons on the ball are all planar. If l denotes 
the common edge length of the (planar) pentagons and hexagons, the area of a 
pentagon is Ap = (512 /4) cot(JT /5) and that of a hexagon Ah = 3-/312/2. Letting 

</> = 2 cos(n /5) = {1 + ./5);2 be the golden ratio, the fraction of the ball covered 
with pentagons can be worked out as 

1 2AP </> 
F = ------'--- = � 0.28435 .  

1 2Ap + 20Ah 4> + J48 - 124>2 
( 1 )  
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Figure 1 A common type of soccer ba l l , covered with 1 2  pentagons and 20 hexagons. 

However the pentagons and hexagons are not planar, and so the accuracy of this esti
mate is open to question. It would be nice to have an exact answer to compare to the 
above result. 

One way of getting the exact answer is to use a theorem of spherical geometry, 
according to which the area of a spherical triangle is equal to the product of its "angular 
excess" (i.e. the amount by which the sum of its angles, in radians, exceeds rr) and the 
square of the radius of the sphere on which it lies [1] . This theorem can be used to 
calculate the area of a pentagon on a soccer ball as five times the area of one of the 
elemental triangles into which it is divided by the great circle arcs that join its center 
to its vertices. Let us take the radius of the soccer ball to be unity and denote by 
Bp the vertex angle of a pentagon on it. Then the angles of the elemental triangle of 
which the pentagon is made up .are 2rr /5, Bp/2, and Bp/2, and the area of this triangle 
is 2rr /5 + Bp/2 + Bp/2 - rr = eP - 3rr /5, from which it follows that the area of the 
pentagon is 5(8p - 3rr /5). The fractional area occupied by the pentagons is therefore 

F =  
12 · 5 · (8p - 3rr/5) 

= 
1 5  (e _ 3rr ) . 4rr rr P 5 (2) 

The above formula suggests an empirical method of determining F, based on mea
suring the angle Bp on a soccer ball. However this method proves to be unsatisfactory 
because (Bp - 3rr /5), the difference in the vertex angles of the spherical and planar 
pentagons, is only on the order of a few degrees and requires Bp to be measured to a 
small fraction of a degree if F is to be calculated accurately via Eq. (2). Needless to 
say, most soccer balls are not put together with this end in mind ! 

An alternative approach to calculating F is based on a formula for the area of a 
spherical triangle due to Euler and Lagrange. Let a, b, and c be vectors from the center 
of a unit sphere to the vertices of a spherical triangle on it. We assume that the triangle 
is an Euler triangle, i.e.,  one in which no side or angle (both expressed in radian 
measure) exceeds rr .  Then the area, Q, of this triangle is given by 

(n) Ia . "b x cl 
tan - = . 2 l + a · b + b · c + c · a  (3) 

A derivation of this formula, together with some of its history, can be found in 
Erikkson [2] . The reader can convince him(her)-self of the correctness of this for
mula in at least one special case by applying it to a spherical triangle all of whose 
angles are right angles (and for which the unit vectors a, b, and c are mutually or
thogonal), for which it yields the expected result Q = rr /2. Let ( e , ifJ) be the (polar, 
azimuthal) angles of a point on the surface of the soccer ball, and take the angular 
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coordinates of the center of a pentagonal face and two of its adjacent vertices to 
be (0, 0) , (01 , 0) , and (01 , 2rr /5) , respectively. The (unit) vectors from the center of 
the soccer ball to these vertices are then a =  (0, 0, 1 ) ,  b = (sin e, , 0, cos e1 ) ,  and 
c = [sin e, cos(2rr/5) ,  sin e, sin(2rr/5) , cos eJ ] .  Substituting these into (3) allows one 
to calculate the area of an elemental triangle, from which one can get F. All that is 
needed to carry out this calculation is knowledge of the angle e1 • 

It is at this point that one needs to delve a little more deeply into the geometry of a 
soccer ball. A soccer ball is modeled on a truncated icosahedron, obtained by slicing 
off the corners of a regular icosahedron in such a way that each of its twelve vertices 
gets replaced by a regular pentagon and each of its twenty (triangular) faces by a regu
lar hexagon. For this to happen, it is necessary that only the central third of each edge 
of the icosahedron be retained (as one of the edges of a resulting hexagonal face), with 
the thirds at either end being discarded to make way for the new pentagonal faces . 
If the edges of the truncated icosahedron are then projected on to its circumscribing 
sphere in such a way that each edge goes into a great circle arc on the sphere, the soccer 
ball pattern results . The reader who wishes to study the geometry of a truncated icosa
hedron in more detail can consult [3] , which also gives instructions for building one. 
Wenninger [ 4] has a nice diagram showing how projecting a truncated icosahedron on 
to its circumscribing sphere leads to a pattern similar to that seen on the surface of a 
soccer ball. 

It is known [1 ,  Chapter 1 0] from the geometry of a regular icosahedron that the 
angle subtended by one of its edges at its center is e0 = arctan(2) � 63 .43 ° .  Taking 
two adjacent vertices of an icosahedron inscribed in a unit sphere to have coordinates 
u1 = (0, 0, 1 )  and u2 = (sin e0 , 0, cos e0) ,  one finds that the two vertices of the soccer 
ball lying on the joining edge are v1 = �u1 + �u2 and v2 = �u 1 + �u2 . The angle e1 
can then be calculated as the angle between the vectors u 1 and v 1 o  and the common 
edge length of a pentagon or hexagon on the soccer ball, which we will denote es , as 
the angle between the vectors v1 and v2 • A simple calculation involving dot products 
shows that [ 8¢ + 17 ] "-' 0 

e, = arccos 
8¢ + 2 1 = 20.08 and 

( 8¢ + 1 ) ,..._, 0 

es = arccos 
10¢ _ 1 = 23 .28 , 

(4) 

where we repeatedly used the relation ¢2 = ¢ + 1 to cast the above expressions in the 
simplest form possible. It is evident from this construction that 2e1 + es = e0 (as is 
also evident numerically) .  With e, in hand, we can calculate F from (3) in the manner 
indicated earlier and find that 

F = - arctan � 0.28 1 77 .  
30  

[ 
sin2 e, sin (2rr /5) 

J T( ( 1  + cos e, ) 2 + sin2 e, cos (2rr /5) 
(5) 

An alternative way of calculating F is to calculate the vertex angle eP of a pentagon 
on the soccer ball and then use it in (2). One can find Op from e1 and es by using the 
cosine rule of spherical trigonometry, according to which the angle A opposite the side 
a of a spherical triangle with sides a , b, and c (in radian measure) is given by 

cos a - cos b cos c 
cos A = . 

sin h sin e 
(6) 

Applying this to an elemental triangle within a pentagonal face, with A =  ep /2, a = 
b = eJ , and c = Os . gives 
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ep = 2 arccos . . = 1 1 1 . 38 . 
sm el sm es 

(7) 

Using the radian measure of this angle in (2) gives F = 0.28 1 77 to five decimal places, 
which agrees with (5) and gives us additional confidence in this result. 

A comparison of (2) and (5) shows that the "planar approximation" used in getting 
(2) is remarkably good and gives a value just about 1 percent higher than the true 
value. The makers of soccer balls are evidently well aware of this close convergence, 
because they put the ball together out of planar pentagonal and hexagonal patches .  
After the patches are sewn together and the ball is inflated, the patches flex gently to 
accommodate themselves to the demands of spherical geometry. 

Despite the near equality of (2) and (5), it is worth noting that the vertex angles of 
the spherical pentagons and hexagons on a soccer ball differ appreciably from those 
of the planar pentagon and hexagon. The vertex angles of the spherical pentagon and 
hexagon are ep = 1 1 1 . 38° and eh = 1 24.3 1 °  (the latter following from the fact that 
eP + 2eh = 360° ), and these differ noticeably from the angles of 1 08° (for a planar pen
tagon) and 1 20° (for a planar hexagon) ,  showing that the differences between spherical 
and planar geometry are not completely masked in local measurements on a soccer 
ball . 

The truncated icosahedron that underlies a soccer ball also serves as the framework 
for a molecule of C-60, or "buckyball," which has a carbon atom at each vertex of 
this polyhedron. It is interesting to contrast buckyball with diamond and graphite, the 
other two allotropes of carbon. In diamond, each carbon atom occurs at the center of 
a tetrahedral cage formed by four other carbon atoms, with the angle between neigh
boring C-C bonds being arccos (- 1 /3) = 1 09.47° . In graphite the carbon atoms are 
arranged in planar hexagonal sheets, with the angle between neighboring C-C bonds 
being 1 20o . Buckyball interpolates neatly between these other two allotropes in having 
bond angles of 1 08° and 1 20° . 
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In November 1 983,  this M AGA Z I N E  published a special issue [7] in tribute to Leonhard 
Euler ( 1707-1 783) on the occasion of the 200th anniversary of his death. In addition 
to a number of excellent survey articles, that issue contained a glossary of terms, for
mulas, equations and theorems that bear Euler's name, the last one of which was the 
following:  
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EULER' S  THEOREM FOR A TRIANGLE. The distance d between the circumcenter 

and incenter of a triangle is given by d2 = R(R - 2r), where R,  r are the circumra
dius and inradius, respectively. 

An immediate consequence of this theorem is R 2:: 2r, which is often referred to as 
Euler's triangle inequality. In this Note (on the occasion of the 300th anniversary of 
Euler's birth) we use "proofs without words" to prove three simple lemmas that can 
be combined with the arithmetic mean-geometric mean inequality in order to prove 
Euler's triangle inequality with only simple algebra (and without reference to the the
orem above). The proof is derived from one that appears in [3] . Coxeter [1] notes that 
although Euler published this inequality in 1 767 [2] , it had appeared earlier ( 1746) in 
a publication by William Chapple. 

As we have just noted, the "inequality" in Euler's triangle inequality is derived from 
the arithmetic mean-geometric mean inequality: For any two positive numbers x and 
y, the arithmetic mean (x + y)/2 is at least as great as the geometric mean .JXY. Hence 
for any three positive numbers x,  y, and z, we have x + y 2:: 2.JXY, y + z 2:: 2-JYZ, 
and z + x 2:: 2,JZX. Multiplying these three inequalities yields 

(x + y) (y + z) (z + x) 2:: 8xyz. ( 1 )  

Now consider a triangle with side lengths a, b ,  and c as shown i n  Figure l (a), and 
bisect each angle to locate the center of the inscribed circle. Extending an inradius 
(length r) to each side partitions the triangle into six smaller right triangles with side 
lengths as indicated in Figure l (b). Noting that x + y = c, y + z = a, and z + x = b, 
( 1 )  becomes 

abc 2:: 8xyz. (2) 

c X y 
Figure 1 

We now show that (2) is equivalent to R 2:: 2r . To accomplish this, first we prove 
(wordlessly) three lemmas-which are of interest in their own right-from which Eu
ler's triangle inequality readily follows. The proofs are elementary, employing nothing 
more sophisticated than similarity of triangles. The first expresses the area K of the 
triangle in terms of the three side lengths a, b, c and the circumradius R. The second, 
whose proof uses a rectangle composed of triangles similar to the right triangles in Fig
ure l (b), expresses the product xyz in terms of the inradius r and the sum x + y + z. 
The third gives the area K in terms of r and x + y + z.  

LEMMA 1 .  4K R = abc. 



60 
Proof 

h a/2 = b R 

MATH EMATICS MAGAZI N E  

h = ! ab 
2 R  

1 1 abc 
· K = -he = - -. .  2 4 R 

Figure 2 4KR = abc 

LEMMA 2. xyz = r2 (x + y + z). 

Proof Letting w denote Jr2 + x2, we have 

� xyz 

rz(x+y) 
Figure 3 xyz = r2 (x + y + z) 

LEMMA 3 .  K = r (x + y + z). 

Proof 

X y 

We now prove 

Figure 4 K = r(x + y + z) 

EULER ' S  TRIANGLE INEQUALITY. In any triangle, the circumradius R and the 
in radius r satisfy R 2: 2r. 
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Proof. Applying Lemma 1 to (2) yields 4 K  R � 8xyz ; invoking Lemma 2 then 

gives 4K R � 8r2 (x + y + z) ; and with Lemma 3 we have 4K R � 8 K  r ;  from which 
R � 2r follows. • 

We conclude with a few comments about several results related to Euler' s  triangle 
inequality and the three lemmas used in our proof. 

1 .  Euler's triangle inequality cannot be improved for general triangles, since R = 2r 
if and only if the triangle is equilateral . However, for the class of right triangles, we 
have R � ( 1  + .J2)r with equality for isosceles right triangles . In fact, if one fixes 

one of the angles of the triangle, say a, then R sin a � r (tan(a/2) + sec (a/2) ) . We 
leave the proofs of these inequalities as an exercise. 

2. Since 2x = b + c - a, 2y = c + a  - b, and 2z = a + b - c, ( 1 )  can be written 
entirely in terms of a, b, and c as 

abc � (a + b - c) (c + a  - b) (b + c - a) .  

This i s  known both a s  the Lehmus inequality [ 1 ]  and Padoa 's inequality [5] , [6] . 

3 .  Lemmas 2 and 3 can be employed to produce a proof of Heron 's formula for 
the area of the triangle: K = Js (s - a ) (s - b) (s - c) , where s denotes the 
semiperimeter, and is given by s = (a + b + c)/2 = x + y + z .  Since s - a = x ,  
s - b = y ,  and s - c = z , the result i n  Lemma 2 can be written a s  r2 s = 
(s - a) (s - b) (s - c) ,  or (rs)2 = s (s - a ) (s - b) (s - c) .  But from Lemma 3 
we have rs = K ,  from which Heron's formula for K now follows (for a wordless 
version of this proof and additional references, see [4]) .  

4. Dividing both sides of  the result in  Lemma 2 by r3 yields :: · � · � = :: + � + � ,  r r r r r r 
which proves the following: If a ,  {3 ,  and y are any three positive angles whose sum 
is rr /2, then 

cot a cot f3 cot y = cot a + cot f3 + cot y .  
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Proposa l s  
To be considered for publication, solutions should be received by july 1 ,  2007. 
1786. Proposed by Marian Tetiva, Bfrlad, Romania. 

Let n 2:: 2 be a positive integer and let On = { I ,  3 ,  . . .  , 2n - 1 }  be the set of odd 
positive integers less than or equal to 2n - 1 .  

a. Prove that if m is a positive integer with 3 _:::: m _:::: n2 and m =/= n2 - 2, then m can 
be written as a sum of distinct elements from On . 

b. Prove that n2 - 2 cannot be written as a sum of distinct elements of On . 

1787. Proposed by Ovidiu Bagdasar, Babes Bolyai University, Cluj Napoca, Romania. 

Let k and n be positive integers with k _:::: n, and let a 1 , a2 , • • •  , an be nonnegative 
real numbers. Prove that 

1788. Proposed by Michael W Botsko, Saint Vincent College, Latrobe, PA. 

Let D be a nonempty compact set of real numbers, let { fn } be a sequence of real 
valued functions on D, and let f be a real valued function defined on D. Suppose that 
limn--+oo fn (Xn ) = f (x) for any sequence {xn } in D with Xn -+ x E D. 

a. Must it be the case that fn -+ f uniformly on D? 
b .  Must i t  be  the case that f is continuous on  D? 

We invite readers to submit problems believed to b e  new and appealing to students and teachers o f  advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a lbTEX file) to 

ehj ohnstl!liastate . edu. All communications, written or electronic, should include on each page the reader's 

name, full address, and an e-mail address and/or FAX number. 
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1789. Proposed by Harris Kwong, SUNY Fredonia, Fredonia, NY. 
For nonzero real numbers a1 , az , . . .  , an , define s = I:�= I ;!; and 

t , �J 
where t is a real number with s t  ;f. - 1 .  Find A - I and det(A ) .  

1790. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni
versity of New York, Bronx, NY. 

Let R be a ring and assume that for each x E R, 

x + xz + x3 + x4 = x 1 1  + x 1 2  + x 1 3 + x2s . 

Prove that there is an integer N > 1 such that for each x E R, we have x = xN .  

Q u ick ies 
Answers to the Quickies are on page 68. 
Q977. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 
Let {xk }f:,0 be an infinite sequence of real numbers for which there exist positive con
stants a ,  b, and c,  with a +  b + c < 1 ,  such that 

lxn+ 1 - Xm+ 1 1 ::::; a lxn - Xn+ 1 1 + b lxn - Xm l + c lxm - Xm+1 1 . 

for all nonnegative integers m and n .  Prove that {xd converges. 

Q978. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 
Let a, b, c be the side lengths of a triangle and let x � 1 .  Prove that 

ex ::::; 2x- 1 (ax + bx ) .  

So l ut ions  
Sets of the same cardinality February 2007 

1761. Proposed by Steve Butler, University of California San Diego, La Jolla, CA. 
For integer n � 2 define the sets 

A (n)  = { (k ,  l) 
B (n) = { (k ,  l )  

1 ::::; k ::::; l ::::; n ,  k + I ::::; n ,  and gcd(k , I) = 1 }  
1 ::::; k ::::; I ::::; n ,  k + l > n ,  and gcd(k, l )  = 1 } ,  

where gcd (k , l )  denotes the greatest common divisor of the integers k and l .  Prove that 
A (n)  and B(n)  have the same cardinality. 

I. Solution by Chip Curtis, Missouri Southern State University, Joplin, MO. 
For n � 2, define f : A (n) ---+ B(n)  by 

f(u ,  v) = (v ,  u + jv ) ,  

where j = j (u , v) i s  the unique positive integer with u + j v  ::::; n and u + ( j  + 1 ) v  > 
n .  For (u , v) E A (n ) ,  gcd(u , v) = 1 ,  so gcd(v , u + j v) = 1 .  It then follows from the 
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definition of j that (v, u + j v) E B(n ) .  Thus, it suffices to show that f is one-to-one 
and onto B(n ) .  

• one-to-one: Suppose that f(u ,  v) = (v ,  u + j v) = (q , p + iq )  = f(p ,  q ) .  Then 
v = q and u + j v  = p + iq . Assume, without loss of generality, that p ::::; u .  Then 

u - p = (i - j)q . ( l )  
However, from 1 ::::; p ::::; q ::::; n and 1 ::::; u ::::; q ::::; n ,  it follows that 0 ::::; u - p ::::; 
q - 1 .  This contradicts ( 1 )  unless i = j .  Thus, (u , v) = (p , q ) ,  so f is one-to-one. 

• onto: Given (x , y) E B(n) let (u , v) = (y - j0x , x) where j0 is the unique positive 
integer satisfying I ::::; y - j0x ::::; x .  Note that we then have 1 ::::; u ::::; v ::::; n ,  u + 
v = x + (y - j0x)  ::::; y ::::; n ,  and gcd(u , v) = gcd(x , y) = 1 ,  so (u , v) E A (n ) .  In 
addition we have 

u + jo v = y :S n and u + Uo + I ) v  = x + y > n .  

Thus f(u ,  v )  = ( v ,  u + j0v) = (x , y) . Hence, f maps onto B(n ) .  

II. Solution by Robert L. Doucette, McNeese State University, Lake Charles, LA. 
The cardinality of the set A (n) U B(n) is the number of relatively prime pairs in the 

array 

( 1 ,  1 )  ( 1 ,  2) ( l , n - 1 )  ( l , n ) 

(2 , 2) (2 , n - 1 )  (2 , n) 

(n , n) 

The number of  pairs of  relatively prime numbers in  column m is ¢ (m ) ,  where ¢ de
notes Euler's totient function. Hence 

n 
I A (n) U B(n) l = L ¢ (m ) .  m= i 

For 2 ::::; m ::::; 2n , let dm (the m - 1 -st diagonal) be the set of ordered pairs (u , v) in the 
above array with u + v = m .  We count the number of elements in A (n)  by counting, 
on diagonal dm , 3 ::::; m ::::; n, the relatively prime pairs (k , m - k) with 1 ::::; k ::::; m - k :  

l { (k , m - k) : 1 ::::; k ::::; m - k,  gcd(k, m - k) = 1 } 1 
1 = 2 l { (k , m - k) 1 :S k ::::; m - 1 ,  gcd(k , m - k) = 1 } 1  

1 = 2 l { (k ,  m - k) 1 :S k ::::; m - 1 ,  gcd(k , m)  = 1 } 1  

1 = 2 ¢ (m ) ,  

where w e  have used the fact that gcd(k, m - k) = gcd(k , m ) .  Adding one for the pair 
( 1 ,  1 ) ,  it follows that 

1 n 1 
I A (n) l = 1 + - L ¢ (m) = - I A (n)  U B(n) l . 2 m=3 2 

Because A (n)  and B(n) are disjoint, this completes the proof. 
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Also solved by Michael Andreoli, Michel Bataille (France), Jean Bogaert (Belgium), Robert Calcaterra, CMC 
328, John Christopher, Commeca Problem Group, Jim Delany, Joe DeMaio and Andy Lightcap, Fejentaltiltuka 
Szeged Problem Solving Group (Hungary), Dmitry Fleishman, G.R.A.20 Problem Solving Group (Italy), Peter 
Gressis and Dennis Gressis, Russell Jay Hendel, Harris Kwong, Peter W. Lindstrom, Graham Lord, Jose H. Nieto 
( Venezuela), Northwestern University Math Problem Solving Group, Michael Reid, Nicholas C. Singer, Albert 
Stadler (Switzerland), Marian Tetiva (Romania), Paul Weisenhorn (Germany), and the proposer. 

Modular Goldbach February 2007 

1762. Proposed by Erwin Just (Emeritus), Bronx Community College of the City Uni
versity of New York, New York, NY. 

Let n be in integer with n ::: 2. Prove that for any even integer k, there exist odd 
primes p and q such that p + q = k (mod n) . 

Solution by Michel Bataille, Rauen, France. 
Let PI , p2 , • • •  , Pr be the prime divisors of n . For i = 1 ,  2, . . .  , r ,  the prime p; 

cannot divide both the odd integers k - 1 and k + 1 (otherwise p; would be odd and 
would divide k + 1 - (k - 1 )  = 2.) Let a; E {k - 1 ,  k + 1 }  be such that p; does not 
divide a; . From the Chinese Remainder Theorem, there exists a E Z satisfying a = a; 
(mod p; )  for i = 1 ,  2, . . .  , r . For such an integer a, we have 

a (k - a) = a; (k - a; ) (mod p; ) 

and, since a; ¢= 0 (mod p; ) and k - a; = 1 or - 1 ,  we see that a (k - a) ¢= 0 (mod p; ) 
for i = 1 ,  2, . . .  , r . As a result, a and b = k - a are both coprime to n .  

Now, b y  Dirichlet's  Theorem, there exist infinitely many primes in the arithmetic 
progressions a + A.n and b + A.n (A. = 0, 1 ,  2, . . .  ). In particular, one can find odd 
primes p ,  q such that p = a  (mod n) and q = b (mod n ) .  This completes the proof 
since these primes p ,  q satisfy 

p + q = a + b = k (mod n) . 

Also solved by Brian D. Beasley, John Christopher, Commeca Problem Group, Chip Curtis, Ron Dotzel, 
G.R.A.20 Problem Solving Group (Italy), Russell Jay Hendel, Peter W. Lindstrom, Jerry Metzger, Albert Stadler 
(Switzerland), Marian Tetiva (Romania), Doug Wilcox, and the proposer. There was one incorrect submission. 

The volume of hull February 2007 

1763. Proposed by Joshua T. Wood and William P. Wardlaw, U. S. Naval Academy, 
Annapolis, MD. 

Let l i  and £2 be two lines in three space, let the distance between £ 1  and £2 ,  mea
sured along a mutual perpendicular to both lines, be d,  and let e be the angle deter
mined by the direction vectors of l i and £2 •  A line segment of length a lies on £ 1  and 
a line segment of length b lies on l2 •  Determine the volume of the convex hull of these 
two segments. 

Solution by Jim Delany, Emeritus, California Polytechnic State University, San Luis 
Obispo, CA. 

Without loss of generality we may assume that l i is the x-axis and that the mutual 
perpendicular to l i  and £2 is the z-axis, chosen so that £2 intersects it at (0, 0, d) .  Then 
one equation for £2 is r(t )  = (t cos <P ,  t sin <P ,  d) where <P is either e or - e ,  depending 
on the orientations of e l and lz .  

Suppose that the end points of  the line segment on £1 are P (a 1 , 0, 0) and Q(a2 , 0, 0) 
with a2 - a 1 = a , and the end points of the segment on £2 are R(b1 cos </J ,  hi sin </J ,  d) 
and S(b2 cos </J ,  b2 sin </J ,  d) where b2 - hi = b. The convex hull of these four points is 
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the tetrahedron P Q R S. Its volume is 

Also solved by Michel Bataille (France), Jean Bogaert (Belgium), Herman Bubbert, Robert Calcaterra, Chip 
Curtis, Knut Dale (Norway), Euler's FO/l.,ers, Peter Gressis and Dennis Gressis, Kim Mcinturff, Jose H. Nieto 
( Venezuela), Paul Weisenhom (Germany), and the proposers. There was one incorrect submission. 

Euler-Mascheroni meets e. February 2007 

1764. Proposed by Ovidiu Furdui, student, Western Michigan University, Kalamazoo 
MI. 

For positive integer n ,  let gn = 1 + 4 + · · · + � - ln n .  Prove that 

lim 
( g� ) 2n 

= e 
n-->oo yKn y 

where y is the Euler-Mascheroni constant. 

Solution by Edward Schmeichel, San Jose State University, San Jose, CA. 
Euler's  summation formula yields the well known estimate 

gn = 1 + - + · · · + - - In n = y + - + 0 - . 
1 1 1 ( 1 ) 
2 n 2n n2 

(See Concrete Mathematics by Ronald Graham, Donald Knuth, and Oren Patashnik, 
2nd edition, Addison Wesley, New York, 1 994.) Thus gn = y + En , where En = f,; + 
0 (;!z)  and 2nEn = I +  0 ( � ) . We then have 

( g� ) 2n 
= 

(
1 

J +o ( k ) ) 2yn 
2 ( 1 + 2nEn ) 2yn 

+ ( (y + En )Y ) n = --'-----::
2
-
y
_
n .:....___ = --'----2y--:

n
--:-'--

yKn 

Because 

y Y+€n y 2n€n 
Y I +o ( k ) 

( 1 + 0 ( l )  ) 2yn ( 1 ) 2yn 
lim 1 +  n = lim 1 + -- = e n --> oo  2yn n-->oo 2yn 

and 
I +o ( I ) 

lim y n = y ,  
n --> oo  

the result follows .  

Also solved by Michel Bataille (France), Michael S. Becker; Gerald E .  Bilodeau, Jean Bogaert (Belgium), 
Paul Bracken, Brian Bradie, Erhard Braune (Austria), Ghinea Catalin (Hungary), Hongwei Chen, Chip Curtis, 
Knut Dale (Norway), David Doster; Robert L Doucette, Alex Fok (China), G.R.A.20 Problem Solving Group 
(Italy), Eugene A. Herman, Dan Jurca, Kee - Wai Lau (China), David Lavit, Paolo Perfetti (Italy), Zouk Mosbeh 
(Lebanon), John M. Sayer; Nicholas C. Singer; Albert Stadler (Switzerland), Marian Tetiva (Romania), Paul 
Weisenhorn (Germany), and the proposer. 

Can you translate that? February 2007 

1765. Proposed by Eugene A. Herman, Grinnell College, Grinnell, /A. 

An object in 3-space is translated by a fixed vector t and then rotated using a rota
tion matrix whose axis of rotation has unit direction vector a and for which the angle 
of rotation in a plane perpendicular to a is () = ; , where n is a positive integer. This 
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translation-rotation move i s  repeated for a total of 2n times. When this i s  done, what 
are the position and orientation of the object relative to its initial position and orienta
tion? 

Solution by Jose H. Nieto, Universidad del Zulia, Maracaibo, Venezuela. 
The object will be translated by the vector 2n (t · a)a (i .e . ,  2n times the orthogonal 

projection of t on a) . 
Let A denote the rotation matrix. Observe that A 2" is the identity. If x is the position 

vector of a point in the object, after the first translation-rotation it will be at position 
A (x + t) = Ax +  At; after the second translation-rotation it will be at A2x + A2t + At; 
. . . ; and after the 2nth translation-rotation it will be at 

A2" x + A2" t + A2"- 1 t + · · · + A2t + At =  x + A2"- 1 t + · · · + A2t + At +  t. 
Now put t = u + w, where u = (t · a)a and w = t - (t · a)a is orthogonal to a. 

Because Aa = a we have 

A2"- 1 u  + . . .  + A2u + Au +  u = 2nu = 2n(t · a)a. 

On the other hand v = A 2"- 1 w + · · · + A 2w + A w + w must be 0, because it is orthog
onal to the axis of rotation and A v = v. Therefore, after the 2n-th translation-rotation, 
x will become 

x + (A2"- 1 u + · · · + A2u + Au +  u) + (A2"- 1 w + · · · + A2w + Aw + w) 
= x + 2n (t · a)a. 

Also solved b y  Michel Bataille (France), Jean Bogaert (Belgium), Herman Bubbert, Robert Calcaterra, Chip 
Curtis, Jim Delany, Robert L. Doucette, G.R.A.20 Problem Solving Group (Italy), Jeffrey M. Groah, and the 
proposet: There were two incorrect submissions. 

Answers 
Solutions to the Quickies from page 64. 

A977. Setting m = n - 1 in the given inequality, we obtain 

It follows that 

for all positive integers n .  Because 0 < b + c < 1 - a, we have 0 < ��� < 1 .  There
fore {xn } is a contractive sequence, and hence converges. 

A978. If x = 1 then the inequality is the well known triangle inequality. Thus we 
assume x > 1 .  Then 

Let g be the function defined by 

( ) _ ( l + tY g t - , 
1 + tX 

( 1  + �r 
1 + ( �f 0 

t > 0. 

( 1 )  



VOL. 8 1 , NO. 1 ,  FEBRUARY 2008 
An easy calculation shows that 

x (t + l )x- 1 ( 1  - tx- 1 )  
' (t)  - -----...,...----8 - ( 1  + rx)2 ' 

69 

so the only critical point is at t = 1 .  Because g (t)  � 1 as t � 0 and t � +oo and 
g ( l )  = 2x- l  > 1 ,  it follows that g assumes its maximum at t = L The desired inequal
ity now follows from ( 1 ) .  

Proof Without Words :  The Cauchy-Schwarz I nequal ity 

lxl �� .....----

REFERENCE 

la l lx l + lb i i Y I  = Ja2 + b2Jx2 + y2 sin O 

=> l {a ,  b) · {x , y) l :::: l l {a , b) l l l l {x , y) l l 

Roger B. Nelsen, Proof Without Words, Mathematical Association of America, Washington, D.C., 1993, 
p. 64. 

SIDNEY H. KUNG 
Cupertino, CA 95014 

sidneykung @ yahoo.com 
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PAU L j .  CAM P B E L L, Editor 

Beloit  Col l ege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles, books, and other materials are 
selected for this section to call attention to interesting mathematical exposition that occurs out
side the mainstream of mathematics literature. Readers are invited to suggest items for review 
to the editors. 

Netz, Reviel, and William Noel, The Archimedes Codex: How a Medieval Prayer Book Is Re
vealing the True Genius of Antiquity 's Greatest Scientist, Da Capo Press, 2007 ; ix + 3 1 3  pp + 
1 6 pp color photos, $27 .50. ISBN 978-0-306- 8 1 580-5 . 
This book on the Archimedes Palimpsest is a collaboration between its leading interpreter (at 
Stanford) and its curator (at the Walters Museum in Baltimore). It is an absolutely fascinating 
tale of the rescue and significance of what Noel terms a "conservation disaster zone," with far 
more details on the provenance of the book than previously revealed. One can only regret its 
modem circumstances: theft from a monastery in Greece, acquisition by a collector who must 
have known that it had been stolen and who likely "enhanced" its marketability with forged 
illustrations obliterating some of the text, and sale to a family that let it molder in a basement 
for 75 years . Three pages, extant in 1 906, now with forged illustrations painted over both the 
words of Archimedes and the medieval prayers over them, are still missing. It took three and a 
half years, with the utmost of care, just to separate the pages of the book. Its unidentified owner 
"Mr. B . ," to whom we owe a great debt, continues to fund techniques to read its contents below 
the accumulated layers of ink and paint; the latest and most successful efforts have used the 
Stanford Linear Accelerator. 

Deakin, Michael A.B . ,  Hypatia of Alexandria, Mathematician and Martyr, Prometheus, 2007 ; 
23 1 pp, $28. ISBN 978- 1 -59 1 02-520-7 . 
This "first book-length biography to attempt an evaluation of Hypatia's mathematics" expands 
on an article by the author in the American Mathematical Monthly 10 1 ( 1994) 234-243. His task 
is not easy, since there are no extant works indisputably by her. Nevertheless, author Deakin sets 
out the historical, intellectual, and religious backgrounds to her life and attested achievements ; 
relates the facts of her life and death; and tries to deduce what she may have written about math
ematics .  Appendices give mathematical background; a sketch of an earlier woman mathemati
cian, Pandrosion, at Alexandria; and (quite usefully) new translations of the primary sources 
about Hypatia. (I take some delight that what Deakin terms "the best accessible summary of 
all" about Hypatia, by Ian Mueller, appeared in a book that I co-edited 20 years ago.) 

Ruelle, David, The Mathematician 's Brain, Princeton University Press, 2007 ; ix + 1 60 pp, 
$22.95 . ISBN 978-0-69 1 - 1 2982-2. 
In 23 essays, author Ruelle concentrates on an excellent presentation for the general reader of 
the "formal and structural aspects" of mathematics, including psychological aspects; but even 
though he is a mathematical physicist, he scarcely mentions applied mathematics. Most math
ematicians will recognize their subject in his succinct portrait of it, even if they disagree with 
some of his opinions. Two essays have a narrower focus, on algebraic geometry and the fate 
of Alexander Grothendieck. Ruelle was at IHES (Institute des Hautes Etudes Scientifiques) in 
France with Grothendieck, and he laments the loss when Grothendieck "abandoned mathemat
ics" or "was abandoned by it" ; a few pages later, Ruelle calls "the disposal of Grothendieck" a 
"disgrace in the history of twentieth-century mathematics." 
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Diaconis, Persi, Susan Holmes, and Richard Montgomery, Dynamical bias in the coin toss, 
SIAM Review 49 (2) (2007) 2 1 1-235 .  

Want to have an edge in winning a coin toss? Bet on the side facing up before the flip ! ( If the 
coin is turned over after catching, bet on the down side.) You can expect to win about 5 1 %  
of the time. The authors' inspiration was the ability of magicians to "flip" coins s o  that the 
toss appears normal but the coin never turns over, and their own construction of a coin-tossing 
machine that always produces the same result ("coin tossing is 'physics' not 'random' ") .  The 
authors model the physics of coin-tossing, prove theorems about the outcome, and estimate 
parameters of the model from filmed human tosses. The crux of their analysis is to take into 
account precession (change of axis of rotation) of the coin; they neglect air resistance (a flip 
lasts 1/6 second). What are probabilists to make of this iconoclasm, which appears to "behead" 
the coin toss as the prototypical random event? Apparently contrary to their analysis, however, 
they conclude that "The classical assumptions with probability 1 /2 are pretty solid." 

Segal, Mark, Chess, chance, and conspiracy, Statistical Science 22 ( 1 007) ( 1 )  98-108 .  

Former chess champion Bobby Fischer has claimed that the 1985 championship match Kar
pov vs. Kasparov was fixed, move by move. This paper focuses on a basis for that claim, the 
fact that in one game White made 1 8  consecutive moves of pieces on the light squares. The 
paper applies methods for analyzing the probabilities of runs in Bernoulli trials , including the 
non-identically-distributed case of varying success probabilities (via embedding into a Markov 
chain). The authors also compare the moves made with evaluations by computer chess programs 
and search game databases for similar runs .  They conclude that the run in question was not so 
remarkable and end with the unnecessary and libelous suggestion that "perhaps" Fischer's own 
19 consecutive wins en route to the championship match "was part of some conspiracy." 

Larsen, Mogens Esrom, Summa Summarum, A K Peters, 2007; xii + 232 pp, $49. ISBN 978- 1 -
5688 1 -323-3 .  

It's a thin book but i t  "aims to provide . . .  a collection, of all known algebraic sums and a guide 
to find the sum you need." In other words, it is a compendium of binomial (and other) identities, 
classified in an unconventional way that avoids hypergeometric functions. Maybe if I look hard, 
I will find a result for a particular sum that I have been seeking for some years . . . .  

Almeida, D.F. ,  G.G. Joseph, and J. Penzel, J . ("Aryabhata Group"), Transmission of the cal
culus from Kerala to Europe, in Proceedings of the International Seminar and Colloquium 
on 1500 Years of Aryabhateeyam (Kerala Sastra Sahitya Parishad, Kochi, India, 2003), edited 
by G.G. Joseph, 33-48. Joseph, George Gheverghese, Infinite series in Kerala: Background 
and motivation, ibid. Almeida, Dennis F. , and George G. Joseph, Eurocentrism in the his
tory of mathematics : The case of the Kerala school, Race and Class 45 (4) (2004) 45-59. 
Almeida, D.F. , J.K. John, and A. Zadorozhnyy, Kerala mathematics: Its possible transmis
sion to Europe and the consequential educational implications, Journal of Natural Geometry 
20 (200 1 )  77-104. Raju, C.K. , Cultural Foundations of Mathematics: The Nature of Mathe
matical Proof and the Transmission of the Calculus from India to Europe in the 16th c. CE, 
Longman, New Delhi, 2007. Bressoud, David, Was calculus invented in India?, College Math
ematics Journal 33 ( 1 )  (2002) 2-1 3 .  Kerala school of astronomy and mathematics, Wikipedia, 
http : //en . wikipedia . org/wiki/Kerala_school_of_astronomy_and_mathematics . 
George G. Joseph is known for The Crest of the Peacock: Non-European Roots of Mathematics 
(2nd ed. ,  Princeton University Press, 2000), which claims that histories of mathematics are 
eurocentrically biased. Born in Kerala, he no doubt has unusual interest in the achievements 
of Keralese mathematicians ( 1 4th to 1 6th centuries) . They derived series expansions for sine, 
cosine, and arctangent, for computational rather than geometric purposes. Joseph, Almeida, and 
co-authors tantalize that Keralese discoveries could have been brought to the West by Jesuits 
or others. But they offer only wishful thinking, no evidence. Their papers, published out of the 
mainstream, are hard to find (write g .  g .  j oseph©exeter . ac . uk for copies). I have not yet seen 
the book by Raju (who accuses Joseph and Almeida of plagiarizing his work, a claim that they 
reject). And "No," Bressoud begins and concludes, three series do not amount to calculus .  
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PROB LEMS 

AI.  . . 1 1 
Fmd all values of a for which the curves y = ax2 + ax + 24 and x = ay2 + ay + 24 

are tangent to each other. 

A2. Find the least possible area of a convex set in the plane that intersects both branches of 
the hyperbola xy = 1 and both branches of the hyperbola xy = - 1 .  (A set S in the plane is 
called convex if for any two points in S the line segment connecting them is contained in S.) 

A3. Let k be a positive integer. Suppose that the integers 1 ,  
2, 3 ,  . . .  , 3k + 1 are written down 

in random order. What is the probability that at no time during this process, the sum of the 
integers that have been written up to that time is a positive integer divisible by 3? Your answer 
should be in closed form, but may include factorials. 

A4. A repunit is a positive integer whose digits in base 10 are all ones. Find all polynomials 
f with real coefficients such that if n is a repunit, then so is f(n ) . 

A5. Suppose that a finite group has exactly n elements of  order p, where p is a prime. Prove 
that either n = 0 or p divides n + 1 .  

A6. A triangulation T of a polygon P i s  a finite collection of triangles whose union is P, and 
such that the intersection of any two triangles is either empty, or a shared vertex, or a shared 
side. Moreover, each side of P is a side of exactly one triangle in T. Say that T is admissible if 
every internal vertex is shared by 6 or more triangles . For example 

Prove that there is an integer Mn , depending only on n, such that any admissible triangulation 
of a polygon P with n sides has at most Mn triangles. 

Bl. Let f be a polynomial with positive integer coefficients . Prove that if n is a positive 
integer, then f(n) divides f(f(n) + 1) if and only if n = 1 .  

B2. Suppose that f :  [0, 1 ]  --+ IR has a continuous derivative and that fo '  f(x) dx = 0 .  Prove 

that for every a E (0, 1 ) ,  

72 

I f'x J<x) dx J ::s � max l !' <x) l . lo 8 o::;x :::; J 



VOL .  8 1 , NO.  1 ,  F E B RUARY 2 008 73 
B3. Let xo = 1 and for n 2: 0, let Xn+ ! = 3xn + Lxn.JSJ . In particular, X! = 5,  x2 = 26, 

x3 = 1 36, x4 = 7 1 2.  Find a closed-form expression for x2o07 . ( Laj means the largest integer 

S a .) 

B4. Let n be a positive integer. Find the number of pairs P,  Q of polynomials with real 
coefficients such that 

and deg P > deg Q .  

B5. Let k be a positive integer. Prove that there exist polynomials Po (n) ,  P1 (n) ,  . . .  , Pk- ! (n ) 
(which may depend on k) such that for any integer n , 

Uf = Po(n) + P, (n)UJ + . . .  + pk_ , (n) l�f- ' 

B6. For each positive integer n , let f(n) be the number of ways to make n !  cents using an 
unordered collection of coins, each worth k! cents for some k, 1 ::; k ::; n .  Prove that for some 
constant C, independent of n , 

nn2j2-Cn e-n2j4 S f(n) S nn2j2+Cn e-n2 !4 _ 

S OLUTIONS 

Solution to Al.  (Based on a student solution) From the first curve we get �� = 2ax + a and 
I 

from the second, �x = 2ay + a . We conclude that at a point of tangency, 2ax + a = , Y 2ay + a  
or equivalently, a2 (2x + 1 ) (2y + 1 )  = 1 .  The two curves are parabolas, one the reflection of 
the other across the line y = x, and we conclude that a point of tangency must lie on this 

± 1 - a  
line, so a2 (2x + 1 )2 = 1 ,  a (2x + 1 )  = ± 1 ,  x = --- . However, we can also solve x = 

2a 
! -a±Ja2_ 1 3 a+ ! 1 - a  I 

ax2 + ax +  1 /24 to find x = la 6 . Hence, if x = � ·  y a2 - Jta + I  = 0. If 

- 1 - a  1 = 
x = � ·  y a2 - Jta + 1 = 2. Solving in both cases gives a =  � . � .  1 3±1�601 . 
Solution to A2. The convex set must contain a quadrilateral Q with a vertex on each branch 

of the hyperbolas, so it suffices to minimize the area of the quadrilateral Q .  Let A ,  B , C, D be 
the vertices of Q on the respective branches of the hyperbola in quadrants 1 ,  2, 3, 4, respectively. 
Because side AD of the quadrilateral intersects the x-axis to the right of the origin 0 ,  and 
side B C does to the left, 0 must be inside the quadrilateral. The area of triangle A 0 D, A = 
(a , 1 /a ) ,  D = (d, - 1 /d) ,  is 

1 ( d 
2 det 

- 1 /d 
a ) = � (� + �) > 1 

1 /a 2 a d -

(since x + 1 /  x 2: 2 for all positive x ). The quadrilateral region can be divided into four such 
triangular regions, so the area of the quadrilateral is at least 4. But the square with vertices 
(± 1 ,  ± 1 )  has area 4, so we're done. 

Solution to A3. The number of ways to write down 1 ,  2,  3, . . .  , 3k + 1 in random order 
is (3k + 1 ) ! ,  so we want to count the number of ways in which none of the "partial sums" 
is divisible by 3. First, consider the integers modulo 3 : 1 ,  2 ,  0, 1 ,  2 ,  0, . . .  , 1 ,  2 ,  0, 1 .  To write 
these with none of the partial sums divisible by 3, we must start with a 1 or a 2.  After that, we 
can include or omit O's at will without affecting whether any of the partial sums are divisible by 
3, so suppose we omit all O's .  The remaining sequence of 1 's and 2's must then be of the form 

1 '  1 '  2, 1 ,  2, 1 '  2, . . . 
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or 

2, 2, 1 ,  2, 1 ,  2, 1 ,  . . .  

(once you start, the rest of the sequence is forced by the condition that no partial sum is divisible 
by 3) .  However, a sequence of the form 2, 2, 1 ,  2, 1 ,  2, 1 ,  . . .  has one more 2 than 1 ,  and we need 
to have one more 1 than 2. So the only possibility for our sequence modulo 3, once the O's are 
omitted, is 1 ,  I ,  2, 1 ,  2, 1 ,  2, . . . .  There are 2k + 1 numbers in this sequence, and the k O's can 
be returned to the sequence arbitrarily except at the beginning. So the number of ways to form 
the complete sequence modulo 3 equals the number of ways to distribute the k identical O's over 
2k + I  boxes (the "slots" after the l 's and 2's),  which by a standard "stars and bars" argument 

is c:) . Once this is done, there are k! ways to replace the k O's in the sequence modulo 3 by 

the actual integers 3, 6 ,  . . . , 3k. Also, there are k! ways to "reconstitute" the 2's and (k + 1 ) !  
ways for the 1 's .  S o  the answer is (3k) k + 1 k! k! k + 1 (2k) - I 

-
(3

_
k

_
+

_
l
-
) !  k 

k !  k !  (k + l ) !  = 
3 k  + 1 . (2k) ! 

= 
3 k  + 1 

. 
k 

Solution to A4. Clearly, any constant polynomial whose value is a repunit will do. We' ll 
show that the nonconstant polynomials with the prescribed property are precisely those of the 

(9X + l )d · 1 0£ - 1 
form f (X) = 9 for positive integer constants d and f .  

Let f b e  such a polynomial . From the hypothesis, there exists a sequence (an )n� l of posi-( 1 0n - l ) 1 0an _ l  
tive integers such that f --9- = 9 . Let deg f = d 0':: 1 .  Then there is a nonzero ( 1 0n - l ) A 
number A such that f(x) � Axd as X --+ 00. Therefore f --9- � 9d 

. 1 0nd _ Thus, 

1 oan � d
A 

I . 1 0nd . This shows that the sequence (an - nd)n> I converges to a limit e such 9 - -
that A = 9d- l  · 1 0£ . Because this sequence consists of integers, it eventually becomes equal ( wn - 1 ) wnd+£ - 1 
to the constant sequence (£) . Thus, from a certain point we have f --9- = 9 . 

wn - 1 (9x + 1 )d . 10£ - 1 
If Xn = --- , we deduce that the polynomial equation j(x) = has in-9 9 

(9X + l )d . we - 1 
finitely many solutions Xn , so f (X) = . It is clear that all such polynomials 9 
satisfy the conditions of the problem, so we are done. 

Solution to AS. Let G be the group, let A be the set of elements of order p, and let g be 
an element of A . Then the elements of A other than g and its powers can be partitioned into 
parts of size p as follows :  If h E A commutes with g, then its part is the set of elements of the 
form g' h .  If it does not commute with g, then its part is the set of elements of the form gk hg-k . 
Since g has p - I nontrivial powers, the statement follows. 

Solution to A6. We claim that the sequence (Mn ) such that 

n Mn = Mn- 1 + 3 + 1 
will do . By Euler's formula for a polygonal tiling on a planar graph, V - E + F = 1 .  We can 
say that each face and each vertex has Euler number 1 ,  and each edge has Euler number -1 ,  and 
the total for all elements is therefore 1 .  We can then redistribute the Euler numbers by donating � from each triangle to each of its 3 vertices, and donating - � from each edge to each of its 
2 vertices. The vertices then come in three kinds: positive, negative, and zero, and their total is 
still I .  The admissibility condition says that interior vertices are nonpositive. 

Therefore the total adjusted Euler number of the boundary vertices is at least 1 .  The adjusted 
Euler number of one boundary vertex is � - � if it is met by t triangles .  If t = 1 ,  then we can 
remove the one triangle that meets the vertex and reduce the number of sides of the polygon 
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by 1, which confirms the claim. If there are no boundary vertices with t = 1, then there must 
be at least 6 with t = 2;  indeed, there must be 6 pairs without any negative boundary vertices 
with t > 3 between them. At least one such pair is k sides apart with k S � . and only boundary 
vertices with t = 3 between them. Precisely 2k + 1 triangles touch these k sides, and we can 
remove these triangles to again obtain a polygon with one fewer total sides. 

Solution to Bl.  First observe that for integers m and n , 
m - n divides f(m) - f(n ) . ( I )  

Assume that f (n) divides f(f(n ) + 1 ) .  Then, b y  ( 1 ) ,  f (n) divides f(f(n ) + 1 )  - f( l ) ,  so 
f(n) divides f( l ) .  

The converse i s  false i f  f i s  a constant polynomial, s o  assume that f i s  non-constant. Be
cause f is a polynomial with positive integer coefficients, f(n) > f( l ) if n > 1, so, from 
above, f (n) does not divide f(f(n) + 1 ) ) .  However, if n = I ,  then ( 1 )  implies that f ( l )  di
vides f(f( l ) + 1 ) - f( I ) , so f( l ) divides f(f( l ) + I ) . 

Solution to B2. Since the extreme values of loa f (x) dx (as a function of a) occur at values 

of a where 

:a (lo
a f(x) dx) = f (a) = 0, 

we may assume that f(a) = 0. Let M = max 1 /' (x) [ . Then by the Mean Value Theorem, for 0:9 :5 1  
0 S x S a, 

[ f (x) [ = [ f (x ) - f (a) [ S M [x - a [ = M(a - x) , 
so 

I loa f(x) dx l S loa l f (x) l dx S loa M(a - x) dx = � Ma2 . 

Thus, if a S 1 /2, we have I loa f(x) dx l S � M, and we are done. 

If a > 1 /2, note that 

il f(x) dx = lo l  f(x) dx - loa f(x) dx = - loa f(x) dx , 
so 

and we are done. 

Solution to B3. By factoring the first few terms, we see that 

X] = 5 = I . 5 ,  X2 = 26 = 2 · I 3 ,  X3 = 1 36 = 4 · 34, X4 = 8 · 89, 

which leads us to conjecture that Xn = 2n- l 
· F2n+3 for n :::: I .  Here, Fm is the mth Fibonacci 

number, which is given by Binet's formula (or by solving the Fibonacci recurrence) : 

We will prove Xn = 2n - l 
· F2n+3 by induction. If it is true for n , then 
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= l ( 1 +

2 

�) 2 . � ( ( 1 +
2 

�) 2n+3 
_ ( 1 _2 �) 2n+3) . 2n J 

= l ( F2n+5 + � ( 1 -
2 

�) 2n+3 ( ( 1 -
2 

�) 2 - ( 1 +

2 

�) 2) ) . 2n J 
l ( 1 - �) 2n+3 

J = F2n+5 · 2n + - --
2

- · 2n . 

1 - v 5 n v 5 - 1 n+ l  ( �) 2n+3 � 
But - --

2
- · 2 = --4- · (3 - .JS )  is between 0 and 1 ,  so Xn+ l  = 2n · F2n+5 

and the induction is done. 

. 22006 (( 1 + �) 40 1 7 ( 1 - �) 40 1 7) In particular, X2007 = � --
2

- - --2- . 

Solution to B4. The expression is equivalent to a factorization 

x2n + 1 = (P (X) + i Q(X)) (P (X) - i Q(X)) , 
where the leading coefficient of P (X) + i Q(X) is either 1 or - 1 .  We can suppose it is 1 ,  so 
that P (X) + i Q(X) is monic, and multiply the answer by 2. 

The roots of X2n + 1 all have multiplicity 1 and occur as complex conjugate pairs . For each 
such pair, one root is a root of P (X) + i Q(X) and the other is a root of P (X) - i Q(X) .  The 
choices of P (X) + i Q(X) amount to n binary choices, plus the choice of overall sign. Thus 
there are 2n+ l  solutions.  

k 
Solution to B5. The question is equivalent to showing that ( � - l  � J) is a linear com-

bination of ( � - l  � J ) j 
for 0 :::; j :::; k - 1 .  It's equivalent because you can expand all of the 

binomials and collect powers of l � J .  Such a linear combination is plausible because all of the 

functions involved are periodic with period k. So, we look for coefficients A; such that 

( . ) ( . ) 2 ( . ) k- 1  ( . ) k 
Ao + A t � +A2 � + · · · + Ak- 1  � = � 

for 0 :::; i :::; k - 1 .  The matrix of coefficients for this system of equations is the Vandermonde 

matrix Vij = ( �) j , which is well-known to be nonsingular. Therefore, the system has a solu

tion, and we are done. 

Solution to B6. It is clear that f (n) is just the number of nonnegative integer solutions of 
the equation a1 · 1 !  + a2 · 2! + · · · + an · n !  = n ! ,  which is the same as the number of solutions 
in nonnegative integers of the inequality a2 · 2! + a3 · 3! + · · · + an - I  · (n - l ) ! + an · n ! :::; n ! .  
For any such solution different from (0, 0 ,  . . .  , 0 ,  n ! )  w e  have an = 0 and w e  will consider 
the hypercube H (a2 , a3 , . . .  , an - I ) = [a2 , a2 + 1) x [a3 , a3 + 1) x · · · x [an- J ,  an- I +  1 ) .  It 
is clear that these hypercubes are disjoint for distinct (a2 , . . .  , an- J ) . So the number of solutions 
of the inequality is the total volume of these hypercubes. Now, observe that any such hypercube 

is included in the set of points (x2 , . . .  , Xn - 1 )  with x; 2::: 0 and L:7,:i (x; - 1 )x ! < n ! .  Also, the 
union of these cubes covers the region consisting of those points (x2 , . . .  , Xn - 1 ) with x; 2::: 0 and 

L:7,:i x; · i !  :<:: n ! .  Indeed, take a point (x2 , . . .  , Xn - 1 )  in this region. Then ( Lx2J ,  . . .  , Lxn_ I J )  
is a solution of the inequality and the point belongs to the corresponding hypercube. Now, more 
generally, let us consider the region R (a 1 , a2 , . . .  , an ; A) defined by the inequalities x; 2::: 0 and 
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a t X t  + azxz + · · · + anXn :::; A. Its volume is 

Vol ( R (a t , . . .  , an ;  A))  = 1 dx1 dxz . . .  dxn Xi =::0 .  a J X J  + · · +an xn �A 

r tn  = Jo Vol (R (a t , . . .  , an - l ; A - an Xn ))  dxn 

= Vol ( R (a J , . . .  , an - I ; 1 ) )  · 11; 
(A - anxn t - 1 dxn 

An 
= - · Vol( R (a J , . . .  , an - t ; 1 ) ) .  

nan 

An 

7 7  

This implies, by induction, that Vol ( R (a t , az , . . .  , an ;  A ) )  = . Thus, because the 
n ! · a t az · · · an 

sum of the volumes of the hypercubes is between the volume of R (2 ! ,  3 ! ,  . . . , (n - 1 ) ! ;  n !) and 
R (2 ! ,  3 ! ,  . . .  , (n - 1 ) ! ;  2! + 3 !  + · · · + (n - 1 ) !  + n !) ,  by counting the solution (0, 0, . . .  , 0, n !) ,  
w e  deduce that the number o f  solutions satisfies 

Let 

(n !)n-Z (n !  + 2 !  + 3 !  + · · · + (n - 1 ) !)"-2 
1 + < f (n) < 1 + -'-----,--.,.-,-,-,-,-------'--

(n - 2) ! 2 !  3 !  · · · (n - 1 ) !  - - (n - 2) ! 2! 3 !  · · · (n - 1 ) !  

Un = In 
n .  

= (n - 2) ln(n !) - ln(n - 2) ! - L )n k !  
( ( ! )n-2 ) n - l 

(n - 2) ! 2! 3 !  · · · (n - 1 ) !  k= I 
n - l n - l 

= (n - 2) ln n ! - ln (n - 2) ! - L )n - k) ln k = O (ln n !) + L k ln k . 
k=l k=l 

n- l n2 1n n  
An easy in integral estimation gives L k ln k  = -- + O(n ln n ) .  Thus, Un = !n2 1n n + 

k=l 2 

O (n In n) and because n !  + 2! + · · · + (n - 1 ) !  < 3n ! ,  it follows that 

n
z 

ln f (n)  = Un + O (ln n !) = 2 · In n + O (n In n ) .  
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• Learn to depend on their own reasoning to determine right from wrong. 
• Develop the central, important ideas of introductory number theory on their own. 

From that experience, they learn that they can personally create important ideas. 
They develop an attitude of personal reliance and a sense that they can think effec
tively about difficult problems. These goals are fundamental to the educational 
enterprise within and beyond mathematics. 

MAA Textbooks • Code: NTI • 1 50 pp., Hardbound, 2007 • ISBN 978-0-88385-751 -9 

List: $51 .00 • MAA Member: $41 .00 
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Hesiod 's Anvil: 
Falling and Spinning Through 
Heaven and Earth 
Andrew J. Simoson 
This book is about how poets, philosophers, 
storytellers, and scientists have described motion, 
beginning with Hesiod, a contemporary of Homer, 
who imagined that the expanse of heaven and the 
depth of hell was the distance that an anvil falls in 
nine days. This book is aimed at students who 

have finished a year-long course in calculus, but it can be used as 
a supplemental text in calculus II, vector calculus, linear algebra, differential 
equations, and modeling. It  blends with equal voice romantic whimsy and 
derived equations, and anyone interested in mathematics will find new and 
surprising ideas about motion and the people who thought about it .  

Some of the things readers will  learn is that Dante's implicit model of the earth 
implies a black hole at its core, that Edmond Halley championed a hollow 
earth, and that da Vinci knew that the acceleration due to the earth's gravity 
was a constant. There are chapters modeling Jules Verne's and H.G.  Wells' 
imaginative flights to the moon and back, the former novelist using a great 
cannon and the l atter using a gravity-shielding material.  The book analyzes 
Edgar Alan Poe's descending pendulum, H.G.  Wells' submersible falling and 
rising in the Marianas Trench, a train rolling along a tunnel through a rotating 
earth, and a pebble falling down a hole without resistance. It compares 
trajectories of balls thrown on the Little Prince's asteroid and on Arthur C. 
Clarke's rotating space station, and it solves an old problem that was perhaps 
inspired by one of the seven wonders of the ancient world.  

The penultimate chapter is a story, based upon the Mayans, that loosely ties 
together the ideas about falling and spinning motion discussed in the book. 
Nearly all the chapters have exercises, some straightforward and some open 
ended, that may serve as the beginnings of students' honors projects. 

Dolciani Mathematical Expositions • Catalog Code: DOL-30 • 250 pp., Hardbound, 2007 
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New from the 
Mathematical Association of America 

Differential Geometry and Its Applications 

Second Edition 

Differential geometry has a long, wonderful history. It has to\Jma.'� 
relevance in areas ranging from machinery design to the classi
fication of four-manifolds to the creation of theories of nature's 
fundamental forces to the study of DNA. 

This book studies the differential geometry of surfaces with 
the goal of helping students make the transition from the com-

partmentalized courses in a standard university curriculum to a type of 
mathematics that is a unified whole. It mixes geometry, calculus, linear algebra, differen
tial equations, complex variables, the calculus of variations, and notions from the sciences. 

Differential geometry is not just for mathematics majors, it is also for students in engineer
ing and the sciences. Into the mix of these ideas comes the opportunity to visualize con
cepts through the use of computer algebra systems such as Maple . The book emphasizes 
that this visualization goes hand-in-hand with the understanding of the mathematics 
behind the computer construction. Students will not only see geodesics on surfaces, but 
they will also see the effect that an abstract result such as the Clairaut relation can have on 
geodesics. Furthermore, the book shows how the equations of motion of particles con
strained to surfaces are actually types of geodesics. Students will also see how particles 
move under constraints. The book is rich in results and exercises that form a continuous 

from those that depend on calculation to proofs that are quite abstract. 
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Is Mathematics 
Inevitable? 
A Miscellany 
Underwood Dudley 

This is a collection of gems from 
the literature of mathematics that 
shine as brightly today as when 
they first appeared in print. They 
deserve to be seen and admired . 

The selections include two oppos
ing views on the purpose of mathe
matics, The Strong Law of Small 
Numbers, the treatment of calculus 

in the 1 771 Encyclopaedia Britannica, several proofs that the number of 
legs on a horse is infinite, a deserved refutation of the ridiculous 
Euler-Diderot anecdote, the real story of Jt and the Indiana 
Legislature, the reason why Theodorus stopped proving that square 
roots were irrational when he got to m, an excerpt from 
Mathematics Made Difficult, a glimpse into the mind of a calculating 
prodigy . . . .  There will be something of interest here for almost anyone 
interested in mathematics . 

Underwood Dudley is the bestselling author of: Mathematical Cranks, 
Nu merology, and the Trisectors . He has an Erdos number of 1 .  

Spectrum • Catalog Code: IMI • 1 60 pp., Hardbound, 2007 • 978-0-88385-566-9 
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